

Apellido y Nombres	Legajo	Calificación			

- 1. Un proceso en estado **TASK_RUNNING**, está ejecutándose en este momento. Se pide justificando la respuesta en cada caso, responder las siguiente preguntas:
 - a) ¿A qué estado cambia cuando el scheduler lo suspende porque expiró su quantum?.
 - b) Si el proceso recibe una cantidad *n* de señales del mismo tipo mientras espera en la cola de ejecución a ser schedulado nuevamente ¿Puede determinar el número *n*?
- 2. El siguiente código está en una ROM de 4 KB mapeada en **0xFFFFF000** y se ejecuta cuando enciende un procesador IA-32.

```
ORG 0xFF000
USE16
code_size EQU (end - init16)
times (4096-code_size) db 0x90
init16:
cli
jmp init16
end:
```

- *a*) Indicar si el código propuesto se ejecuta correctamente. En caso afirmativo, indicar a qué dirección se efectúa el salto. En caso negativo proponé una solución.
- b) ¿Cual es la función de **ORG** y **USE** en este código?
- 3. A continuación se tiene las entradas de una **TLB** correspondientes a una misma tarea que ejecuta en un sistema basado en un procesador x86. Las entradas están en el orden en el que se han ido generando las traducciones.

#	Nro.Pag.	Descriptor	Ctrl
1	7C047	0EF00121	ccc
2	7EEF0	1EF01067	ccc
3	EC004	001F0163	ccc
4	EC005	001F7123	ccc
5	46104	1F011005	ccc
6	46109	1F010027	ccc

Para dicha tarea el registro **CR3 = 0x000E4000**, y las tablas de página correspondientes a las direcciones en uso se alojan en páginas de memoria física inmediatamente contiguas al **DTP** en el orden en el que se han ido requiriendo. A modo de ejemplo: la tabla de páginas correspondiente a la entrada N°1 de la **TLB**, se ubica en la página de memoria contigua a la del DTP, la N°2 se aloja en la siguiente página física, y así sucesivamente. Se pide:

- a) Para las entradas 1 y 2 de la **TLB**, escribir el contenido de sus correspondientes descriptores en cada nivel de la jerarquía de tablas de traducción a direcciones físicas, considerando que se trata de las dos primeras páginas requeridas al ejecutar la tarea.
- b) Especificar para cada **PDE** que valor deben tener los bits **U/S** y **R/W**, para ser consistentes con el contenido de la TLB. Respuestas posibles en cada caso: 0, 1, o X (indistinto).
- c) Suponiendo que las seis entradas están siendo utilizadas por una misma tarea, y por cada task switch se modifica **CR3**. ¿Que ocurre con cada una al momento del task switch?. ¿Cual es el tratamiento para aquellas que se han modificado?
- d) ¿Cual es la función dentro de la **TLB** de los bits identificados genéricamente como **Ctrl**?.

31 30 29 28 27 26 25 24 23 22	21 20 19 18 17	16 15 14 13	12	11 10 9	8	7	6	5	4	3	2	1	0	
Address of page directory ¹				Ignored					P C D	P W T				CR3
Bits 31:22 of address of 4MB page frame	Reserved (must be 0)	Bits 39:32 of address ²	P A T	Ignored	G	1	D	А	P C D	P W T	U / S	R / W	1	PDE: 4MB page
Address of page table Ignored Q I P P U R C W / / / N D T S W							1	PDE: page table						
Ignored									0	PDE: not present				
								1	PTE: 4KB page					
Ignored							<u>0</u>	PTE: not present						

- 4. ¿Por qué un sistema que utilice dos o más niveles de privilegio diferentes debe usar una TSS aun cuando la conmutación de tareas es manual?
- 5. Explicar el mecanismo mediante el cual un driver bloquea a un proceso cuando el recurso que este pide no está disponible. ¿Qué transición de estados experimenta el proceso y de qué manera? ¿En qué nivel de privilegio se realiza esta transición de estados?.
- 6. Explicá detalladamente cómo funciona el handshake de Interrupt Acknowledge entre el procesador x86 y los PIC 8259. Detallar cómo obtiene el procesador el tipo de cada interrupción, y quien lo provee en cada caso.
- 7. Una tarea tiene MM4 = 0x3892 F145 DEDA A164 y MM6 = 0x532F 1768 E234 94BA
 - a) Indicar cuánto valen las sumas con aritmética de desborde y con aritmética saturada con y sin signo si cada paquete es de 16 bits.
 - b) ¿Qué mecanismo aplicaría dentro del handler del timer tick para poder resguardar el contexto SIMD de esta tarea? ¿Qué instrucciones debería utilizar para recuperar y guardar el contexto de SIMD?
- 8. Desde diferentes pestañas o ventanas (según le resulte más sencillo) un navegador web, envía requerimientos a un mismo web server (por ejemplo www.google.com) que tiene una IP pública fija y un well known port asociado. Indicar cómo es posible que cada ventana presente la información recibida desde el servidor sin que se mezclen las respuestas.