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Core Architecture – BF53X

Control Units
Program Sequencer
Conditional jumps and subroutine calls
Nested zero-overhead looping
Code density
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Control Units – BF53X

Program Sequencing 
 Interrupt Processing modules
Program Flow Control
External Event Management
Specific interrupt sources
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Program Sequencing and Interrupt 
Processing Block Diagram

INSTRUCTION DATA BUS (IDB)

INSTRUCTION ADDRESS BUS (IAB)

REGISTER ACCESS BUS (RAB)

PERIPHERAL ACCESS BUS (PAB)
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Program Flow

 Program flow in the chip is mostly linear
 The processor executing program instructions 

sequentially
 The linear flow varies occasionally when the 

program uses nonsequential program 
structures, such as:
 Loops.
 Subroutines.
 Jumps.
 Interrupts and Exceptions.
 Idle.
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Program Flow Variations
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Instruction Pipeline

 The program sequencer determines the next 
instruction address by examining both the 
current instruction being executed and the 
current state of the processor.

 The processor has a ten-stage instruction 
pipeline

 The instructions can be 16, 32, or 64 bits wide
 Multi-issue instructions are 64 bits in length 

and consist of one 32-bit instruction and two 
16-bit instructions
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Instruction Pipeline (II)
Pipeline Stage Description
Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of 

instruction cache 
Instruction Fetch 2 (IF2) Wait for instruction data 
Instruction Fetch 3 (IF3) Read from IDB bus and align instruction 

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address 

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start compare tag of data 
cache 

Data Fetch 2 (DF2) Read register files 

Execute 1 (EX1) Read data from LD0 and LD1 bus, start multiply and video 
instructions 

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, etc.) 

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also 
referred to as the “commit” stage)
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Instruction Pipeline (III)
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Instruction Pipeline (IV)
 

cycle 
Pipeline is full and completes 
one instruction per cycle 
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Branches

 A branch occurs when a JUMP or CALL 
instruction begins execution at a new 
location other than the next sequential 
address.

 The are five types of return instructions: RTS, 
RTI, RTX, RTN and RTE.

 Each return type has its own register for 
holding the return address. RETS, RETI, 
RETX, RETN and RETE.
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Branches (II)

 The program sequencer can evaluate the CC 
status bit to decide whether to execute a 
branch.

 Conditional JUMP instructions use static 
branch prediction to reduce the branch latency 
caused by the length of the pipeline.

 Branches can be direct or indirect.
 A direct branch address is determined solely by the 

instruction word. JUMP 0x30;
 An indirect branch gets its address from the contents 

of a DAG register. JUMP(P3);
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Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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Direct Short and Long Jumps

 The target of the branch is:
PC-relative address + Offset

 Short jump:
 The PC-relative offset is a 13-bit immediate value that 

must be a multiple of two
 Dynamic range of –4096 to +4094 bytes.
 JUMP.S 0xnnnn

 Long jump:
 The PC-relative offset for is a 25-bit immediate value 

that must also be a multiple of two. 
 Dynamic range of –16,777,216 to +16,777,214 bytes.
 JUMP.L 0xnnnnnnn
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Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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Direct Call

 CALL instruction copies the address of the 
instruction which would have executed next 
into the RETS register.

 The direct CALL instruction has a 25-bit, PC-
relative offset that must be a multiple of two.

 The 25-bit value gives an effective dynamic 
range of –16,777,216 to +16,777,214 bytes.

 A direct CALL instruction is always a 4-byte 
instruction.
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Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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Indirect Branch and Call

 The indirect instructions get their destination address 
from a data address generator (DAG) P-register. 

 For the CALL instruction, the RETS register is 
loaded with the address of the instruction which 
would have executed.

P4.H = HI(mytarget);
P4.L = LO(mytarget);
JUMP (P4);
…….
mytarget:

/* continue here */
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Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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PC-Relative Indirect Branch and Call

 The PC-relative indirect JUMP and CALL 
instructions use the contents of a P-register as 
an offset to the branch target. 

 For the CALL instruction, the RETS register is 
loaded with the address of the instruction 
which would have executed next 

JUMP (PC + P3) ;
CALL (PC + P0) ;
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Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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Subroutines

 Subroutines are code sequences that are invoked 
by a CALL instruction.

/* parent function */
R0 = 0x1234 (Z); /* pass a parameter */
CALL myfunction;
/* continue here after the call */
[P0] = R0; /* save return value */
JUMP somewhereelse;

RETS = This
address

“leaf functions”
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Subroutines - Leaf functions

myfunction: /* subroutine label */

[--SP] = (R7:7, P5:5); /* multiple push instruction */
P5.H = HI(myregister); /* P5 used locally */
P5.L = LO(myregister);
R7 = [P5]; /* R7 used locally */
R0 = R0 + R7; /* R0 user for parameter passing*/
(R7:7, P5:5) = [SP++]; /* multiple pop instruction */
RTS; /* return from subroutine */

myfunction.end: /* closing subroutine label */
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Subroutines - No leaf functions
/* parent function */

CALL function_a; 

/* continue here after the call */
JUMP somewhereelse;

function_a:

[--SP] = (R7:7, P5:5); 
[--SP] = RETS;        // save RETS onto stack

CALL function_b;  // call further subroutines
CALL function_c;

RETS = [SP++];       // restore RETS
(R7:7, P5:5) = [SP++]; 
RTS; 

function_b:
/* do something */
RTS;

function_c:
/* do something else */
RTS;

RETS = This
address

RETS = This
addressRETS = This

address
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Managing the Stack 
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_parent:
...
R0 = 1;
R1 = 3;
[--SP] = R0;
[--SP] = R1;
CALL _sub;
R1 = [SP++]; // R1 = 4
R0 = [SP++]; // R0 = 2
...
_parent.end:

_sub:
[--SP] = FP;           // save frame pointer
FP = SP;                // new frame

[--SP] = (R7:5);      // multiple push

R6 = [FP+4];          // R6 = 3
R7 = [FP+8];          // R7 = 1

R5 = R6 + R7;        // calculate anything
R6 = R6 - R7;

[FP+4] = R5;          // R5 = 4
[FP+8] = R6;          // R6 = 2
(R7:5) = [SP++];    // multiple pop

FP = [SP++];         // restore frame pointer
RTS;

_sub.end:

Subroutines - Parameter Passing 

UTN-FRBA 2011 Eng. Julian S. Bruno



Subroutines
Link and Unlink Code Sequencer

_sub2:
LINK 0;
[--SP] = (R7:5);
R6 = [FP+8];        //R6 = 3
R7 = [FP+12];      //R7 = 1
R5 = R6 + R7;
R6 = R6 - R7;
[FP+8] = R5;        // R5 = 4
[FP+12] = R6;      // R6 = 2
(R7:5) = [SP++];
UNLINK;
RTS;
_sub2.end:

_sub3:
LINK 8;
[--SP] = (R7:0, P5:0);

R7 = 0 (Z);
[FP-4] = R7;
[FP-8] = R7;
...
(R7:0, P5:0) = [SP++];
UNLINK;
RTS;
_sub3.end:
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LINK n; UNLINK
[--SP] = RETS; SP = FP;

[--SP] = FP; FP = [SP++];

FP = SP; RETS = [SP++];

SP += -n; …..



Subroutines
Link and Unlink Code Sequencer

_sub2:
LINK 0;
[--SP] = (R7:5);
R6 = [FP+8];        //R6 = 3
R7 = [FP+12];      //R7 = 1
R5 = R6 + R7;
R6 = R6 - R7;
[FP+8] = R5;        // R5 = 4
[FP+12] = R6;      // R6 = 2
(R7:5) = [SP++];
UNLINK;
RTS;
_sub2.end:

_sub3:
LINK 8;
[--SP] = (R7:0, P5:0);

R7 = 0 (Z);
[FP-4] = R7;
[FP-8] = R7;
...
(R7:0, P5:0) = [SP++];
UNLINK;
RTS;
_sub3.end:
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LINK n; UNLINK
[--SP] = RETS; SP = FP;

[--SP] = FP; FP = [SP++];

FP = SP; RETS = [SP++];

SP += -n; …..



Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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Condition Code (CC) Flag

 The CC flag can resolve the direction of a 
branch or the movement of a register.

 There are eight ways of accessing the CC, 
and are used to control program flow.
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IF CC JUMP dest; IF CC R0 = P0; 

Conditional Branch Conditional Register Move



Condition Code (CC) Flag (II)

1. A conditional branch is resolved by the value in CC.
2. A Data register value may be copied into CC, and the

value in CC may be copied to a Data register.
3. The BITTST instruction accesses the CC flag.
4. A status flag may be copied into CC, and the value in 

CC may be copied to a status flag.
5. The CC flag bit may be set to the result of a Pointer 

register comparison.
6. The CC flag bit may be set to the result of a Data 

register comparison.
7. Some shifter instructions (rotate or BXOR) use CC as 

a portion of the shift operand/result.
8. Test and set instructions can set and clear the CC bit.

UTN-FRBA 2011 Eng. Julian S. Bruno



Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction
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Branch Prediction

 Static branch strategy based on CC state.
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/* previous instructions */

If CC JUMP dest (bp)

/* following instructions */

dest:

/* branch instructions */

Predicted-taken (bp)

/* previous instructions */

If CC JUMP dest

/* following instructions */

dest:

/* branch instructions */

Predicted-not-taken (default)



Branch Prediction (II)

True

Not-taken Taken

Prediction
Not-taken 0 8

Taken 8 4

Branch latency (CPU cycles)

Typically, code analysis shows that a good default condition is 
to predict branch-taken for branches to a prior address 
(backwards branches), and to predict branch-not-taken for 
branches to subsequent addresses (forward branches).

Conclusion
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Hardware Loops
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Hardware Loops (II)
 The sequencer supports a mechanism of zero-

overhead looping. 
 The sequencer contains two loop units, each 

containing three registers:
 Loop Top register (LT0, LT1)

Holds the address of the first instruction within a loop.
 Loop Bottom register (LB0,LB1)

Holds the address of the last instruction of the loop.
 Loop Count register (LC0, LC1).

Maintains a count of the remaining iterations of the loop.

 Loop unit 1 has a higher priority than loop unit 0.
 Loop unit 1 is used for the inner loop and loop 

unit 0 is used for the outer loop.
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Hardware Loops (II)
 The sequencer supports a mechanism of zero-

overhead looping. 
 The sequencer contains two loop units, each 

containing three registers:
 Loop Top register (LT0, LT1)

Holds the address of the first instruction within a loop.
 Loop Bottom register (LB0,LB1)

Holds the address of the last instruction of the loop.
 Loop Count register (LC0, LC1).

Maintains a count of the remaining iterations of the loop.

 Loop unit 1 has a higher priority than loop unit 0.
 Loop unit 1 is used for the inner loop and loop 

unit 0 is used for the outer loop.
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Hardware Loops (III)

 The processor supports a 4-location instruction 
loop buffer that reduces instruction fetches 
while in loops. 

 If the loop code is <=4 instructions, then no 
fetches to instruction memory are necessary.

 The loop buffer effectively eliminates the 
instruction fetch time in loops with more than 4 
instructions by allowing fetches to take place 
while instructions in the loop buffer are being 
executed.
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Hardware Loops (IV)

 The LSETUP instruction can be used to load all 
three registers of a loop unit at once.

 Each loop register can also be loaded individually 
with a register transfer

 Loading individually incurs a significant overhead.
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Hardware Loops (V)
Some restrictions

 A 4-cycle latency occurs on the first loopback when 
the LSETUP specifies a nonzero start offset 
(lp_start). 

 The processor has no restrictions regarding which 
instructions can occur in a loop end position. 
Branches and calls are allowed in that position.

First/Last 
Address of the 

Loop 

PC-Relative Offset Used to 
Compute the Loop Start Address 

Effective Range of the Loop 
Start Instruction 

Top / First 5-bit signed immediate; must be a 
multiple of 2. 

0 to 30 bytes away from LSETUP 
instruction. 

Bottom / Last 11-bit signed immediate; must be a 
multiple of 2. 

0 to 2046 bytes away from 
LSETUP instruction (the defined 
loop can be 2046 bytes long).
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Hardware Loops (VI) 
Loop Unrolling

 Loops are often unrolled in order to pass only N-1 
times. 
 The initial data fetch is executed before the loop is entered. 
 The final calculations are done after the loop terminates.

 This technique has two advantage:
 Data is fetched exactly N times 
 I-Registers have their initial value after processing. 

 The “algorithm” sequence can be executed multiple 
times without any need to initialize DAG-Registers 
again.
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Hardware Loops (VI) 
Loop Unrolling

 Loops are often unrolled in order to pass only N-1 
times. 
 The initial data fetch is executed before the loop is entered. 
 The final calculations are done after the loop terminates.

 This technique has two advantage:
 Data is fetched exactly N times 
 I-Registers have their initial value after processing. 

 The “algorithm” sequence can be executed multiple 
times without any need to initialize DAG-Registers 
again.

#define N 1024

// setup
I0.H = 0xFF80; I0.L = 0x0000; B0 = I0; L0 = N*2 (Z);
I1.H = 0xFF90; I1.L = 0x0000; B1 = I1; L1 = N*2 (Z);
P5 = N-1 (Z);

// algorithm

A0 = 0 || R0.H = W[I0++] || R1.L = W[I1++];

LSETUP (lp,lp) LC0 = P5;
lp: A0+= R0.H * R1.L || R0.H = W[I0++] || R1.L = W[I1++];

A0+= R0.H * R1.L;
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Hardware Loops (VII)
Saving and Resuming Loops

 Is needed an special care when:
 If the loop is interrupted by an interrupt service routine 

that also contains a hardware loop and requires the same 
loop unit.

 If the loop is interrupted by a preemptive task switch.
 If the loop contains a CALL instruction that invokes an 

unknown subroutine that may have local loops.

 This environment can be saved and restored by 
pushing and popping the loop registers.

 This takes multiple cycles, as the loop buffers must 
also be prefilled again.
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Hardware Loops (VII)
Saving and Resuming Loops

 Is needed an special care when:
 If the loop is interrupted by an interrupt service routine 

that also contains a hardware loop and requires the same 
loop unit.

 If the loop is interrupted by a preemptive task switch.
 If the loop contains a CALL instruction that invokes an 

unknown subroutine that may have local loops.

 This environment can be saved and restored by 
pushing and popping the loop registers.

 This takes multiple cycles, as the loop buffers must 
also be prefilled again.

lhandler:

…..  //Save other registers here

[--SP] = LC0;     // save loop 0 
[--SP] = LB0;
[--SP] = LT0;

…..  //Handler code here

LT0 = [SP++];
LB0 = [SP++];
LC0 = [SP++];    /* This will cause a “replay,” 

that is, a ten-cycle refetch. */

…..  //Restore other registers here

RTI;
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Recommended bibliography

 Blackfin Processor Programming Reference, 
Revision 1.3, September 2008
 Ch4: PROGRAM SEQUENCER
 Ch7: PROGRAM FLOW CONTROL
 Ch10: STACK CONTROL

 WS Gan, SM Kuo. Embedded Signal Processing 
with the MSA. John Wiley and Sons. 2007
 Ch 6: Introduction to the Blackfin Processor

 NOTE: Many images used in this presentation were extracted from the recommended bibliography.
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Thank you!

Questions?
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