
Eng. Julian BrunoUTN-FRBA
2011

Eng. Julian S. Bruno

REAL TIME
DIGITAL
SIGNAL

PROCESSING

Introduction to the Blackfin Processor

Architecture

UTN-FRBA 2011 Eng. Julian S. Bruno

Core Architecture – BF53X

Control Units
Program Sequencer
Conditional jumps and subroutine calls
Nested zero-overhead looping
Code density

UTN-FRBA 2011 Eng. Julian S. Bruno

Control Units – BF53X

Program Sequencing
 Interrupt Processing modules
Program Flow Control
External Event Management
Specific interrupt sources

UTN-FRBA 2011 Eng. Julian S. Bruno

Program Sequencing and Interrupt
Processing Block Diagram

INSTRUCTION DATA BUS (IDB)

INSTRUCTION ADDRESS BUS (IAB)

REGISTER ACCESS BUS (RAB)

PERIPHERAL ACCESS BUS (PAB)

UTN-FRBA 2011 Eng. Julian S. Bruno

Program Flow

 Program flow in the chip is mostly linear
 The processor executing program instructions

sequentially
 The linear flow varies occasionally when the

program uses nonsequential program
structures, such as:
 Loops.
 Subroutines.
 Jumps.
 Interrupts and Exceptions.
 Idle.

UTN-FRBA 2011 Eng. Julian S. Bruno

Program Flow Variations

UTN-FRBA 2011 Eng. Julian S. Bruno

Instruction Pipeline

 The program sequencer determines the next
instruction address by examining both the
current instruction being executed and the
current state of the processor.

 The processor has a ten-stage instruction
pipeline

 The instructions can be 16, 32, or 64 bits wide
 Multi-issue instructions are 64 bits in length

and consist of one 32-bit instruction and two
16-bit instructions

UTN-FRBA 2011 Eng. Julian S. Bruno

Instruction Pipeline (II)
Pipeline Stage Description
Instruction Fetch 1 (IF1) Issue instruction address to IAB bus, start compare tag of

instruction cache
Instruction Fetch 2 (IF2) Wait for instruction data
Instruction Fetch 3 (IF3) Read from IDB bus and align instruction

Instruction Decode (DEC) Decode instructions

Address Calculation (AC) Calculation of data addresses and branch target address

Data Fetch 1 (DF1) Issue data address to DA0 and DA1 bus, start compare tag of data
cache

Data Fetch 2 (DF2) Read register files

Execute 1 (EX1) Read data from LD0 and LD1 bus, start multiply and video
instructions

Execute 2 (EX2) Execute/Complete instructions (shift, add, logic, etc.)

Write Back (WB) Writes back to register files, SD bus, and pointer updates (also
referred to as the “commit” stage)

UTN-FRBA 2011 Eng. Julian S. Bruno

Instruction Pipeline (III)

UTN-FRBA 2011 Eng. Julian S. Bruno

Instruction Pipeline (IV)

cycle
Pipeline is full and completes
one instruction per cycle

IF1 IF2 IF3 DE

AC EX

EX

EX

EX

WB

IF1 IF2 IF3 DE

AC EX

EX

EX

EX

WB

IF1 IF2 IF3 DE

AC EX

EX

EX

EX

WB

Inst. #1
Inst. #2
Inst. #3
Inst. #4
Inst. #5
Inst. #6
Inst. #7
Inst. #8
Inst. #9
Inst. #10

IF1 IF2 IF3

IF1 IF2 IF3 DE

AC EX

EX

EX

EX
 IF1 IF2 IF3 DE

AC EX

EX

EX

 IF1 IF2 IF3 DE

AC EX

EX
 IF1 IF2 IF3 DE

AC EX

 IF1 IF2 IF3 DE

AC

IF1 IF2 IF3 DE

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches

 A branch occurs when a JUMP or CALL
instruction begins execution at a new
location other than the next sequential
address.

 The are five types of return instructions: RTS,
RTI, RTX, RTN and RTE.

 Each return type has its own register for
holding the return address. RETS, RETI,
RETX, RETN and RETE.

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (II)

 The program sequencer can evaluate the CC
status bit to decide whether to execute a
branch.

 Conditional JUMP instructions use static
branch prediction to reduce the branch latency
caused by the length of the pipeline.

 Branches can be direct or indirect.
 A direct branch address is determined solely by the

instruction word. JUMP 0x30;
 An indirect branch gets its address from the contents

of a DAG register. JUMP(P3);
UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

Direct Short and Long Jumps

 The target of the branch is:
PC-relative address + Offset

 Short jump:
 The PC-relative offset is a 13-bit immediate value that

must be a multiple of two
 Dynamic range of –4096 to +4094 bytes.
 JUMP.S 0xnnnn

 Long jump:
 The PC-relative offset for is a 25-bit immediate value

that must also be a multiple of two.
 Dynamic range of –16,777,216 to +16,777,214 bytes.
 JUMP.L 0xnnnnnnn

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

Direct Call

 CALL instruction copies the address of the
instruction which would have executed next
into the RETS register.

 The direct CALL instruction has a 25-bit, PC-
relative offset that must be a multiple of two.

 The 25-bit value gives an effective dynamic
range of –16,777,216 to +16,777,214 bytes.

 A direct CALL instruction is always a 4-byte
instruction.

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

Indirect Branch and Call

 The indirect instructions get their destination address
from a data address generator (DAG) P-register.

 For the CALL instruction, the RETS register is
loaded with the address of the instruction which
would have executed.

P4.H = HI(mytarget);
P4.L = LO(mytarget);
JUMP (P4);
…….
mytarget:

/* continue here */

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

PC-Relative Indirect Branch and Call

 The PC-relative indirect JUMP and CALL
instructions use the contents of a P-register as
an offset to the branch target.

 For the CALL instruction, the RETS register is
loaded with the address of the instruction
which would have executed next

JUMP (PC + P3) ;
CALL (PC + P0) ;

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

Subroutines

 Subroutines are code sequences that are invoked
by a CALL instruction.

/* parent function */
R0 = 0x1234 (Z); /* pass a parameter */
CALL myfunction;
/* continue here after the call */
[P0] = R0; /* save return value */
JUMP somewhereelse;

RETS = This
address

“leaf functions”

UTN-FRBA 2011 Eng. Julian S. Bruno

Subroutines - Leaf functions

myfunction: /* subroutine label */

[--SP] = (R7:7, P5:5); /* multiple push instruction */
P5.H = HI(myregister); /* P5 used locally */
P5.L = LO(myregister);
R7 = [P5]; /* R7 used locally */
R0 = R0 + R7; /* R0 user for parameter passing*/
(R7:7, P5:5) = [SP++]; /* multiple pop instruction */
RTS; /* return from subroutine */

myfunction.end: /* closing subroutine label */
UTN-FRBA 2011 Eng. Julian S. Bruno

Subroutines - No leaf functions
/* parent function */

CALL function_a;

/* continue here after the call */
JUMP somewhereelse;

function_a:

[--SP] = (R7:7, P5:5);
[--SP] = RETS; // save RETS onto stack

CALL function_b; // call further subroutines
CALL function_c;

RETS = [SP++]; // restore RETS
(R7:7, P5:5) = [SP++];
RTS;

function_b:
/* do something */
RTS;

function_c:
/* do something else */
RTS;

RETS = This
address

RETS = This
addressRETS = This

address

UTN-FRBA 2011 Eng. Julian S. Bruno

Managing the Stack

UTN-FRBA 2011 Eng. Julian S. Bruno

_parent:
...
R0 = 1;
R1 = 3;
[--SP] = R0;
[--SP] = R1;
CALL _sub;
R1 = [SP++]; // R1 = 4
R0 = [SP++]; // R0 = 2
...
_parent.end:

_sub:
[--SP] = FP; // save frame pointer
FP = SP; // new frame

[--SP] = (R7:5); // multiple push

R6 = [FP+4]; // R6 = 3
R7 = [FP+8]; // R7 = 1

R5 = R6 + R7; // calculate anything
R6 = R6 - R7;

[FP+4] = R5; // R5 = 4
[FP+8] = R6; // R6 = 2
(R7:5) = [SP++]; // multiple pop

FP = [SP++]; // restore frame pointer
RTS;

_sub.end:

Subroutines - Parameter Passing

UTN-FRBA 2011 Eng. Julian S. Bruno

Subroutines
Link and Unlink Code Sequencer

_sub2:
LINK 0;
[--SP] = (R7:5);
R6 = [FP+8]; //R6 = 3
R7 = [FP+12]; //R7 = 1
R5 = R6 + R7;
R6 = R6 - R7;
[FP+8] = R5; // R5 = 4
[FP+12] = R6; // R6 = 2
(R7:5) = [SP++];
UNLINK;
RTS;
_sub2.end:

_sub3:
LINK 8;
[--SP] = (R7:0, P5:0);

R7 = 0 (Z);
[FP-4] = R7;
[FP-8] = R7;
...
(R7:0, P5:0) = [SP++];
UNLINK;
RTS;
_sub3.end:

UTN-FRBA 2011 Eng. Julian S. Bruno

LINK n; UNLINK
[--SP] = RETS; SP = FP;

[--SP] = FP; FP = [SP++];

FP = SP; RETS = [SP++];

SP += -n; …..

Subroutines
Link and Unlink Code Sequencer

_sub2:
LINK 0;
[--SP] = (R7:5);
R6 = [FP+8]; //R6 = 3
R7 = [FP+12]; //R7 = 1
R5 = R6 + R7;
R6 = R6 - R7;
[FP+8] = R5; // R5 = 4
[FP+12] = R6; // R6 = 2
(R7:5) = [SP++];
UNLINK;
RTS;
_sub2.end:

_sub3:
LINK 8;
[--SP] = (R7:0, P5:0);

R7 = 0 (Z);
[FP-4] = R7;
[FP-8] = R7;
...
(R7:0, P5:0) = [SP++];
UNLINK;
RTS;
_sub3.end:

UTN-FRBA 2011 Eng. Julian S. Bruno

LINK n; UNLINK
[--SP] = RETS; SP = FP;

[--SP] = FP; FP = [SP++];

FP = SP; RETS = [SP++];

SP += -n; …..

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

Condition Code (CC) Flag

 The CC flag can resolve the direction of a
branch or the movement of a register.

 There are eight ways of accessing the CC,
and are used to control program flow.

UTN-FRBA 2011 Eng. Julian S. Bruno

IF CC JUMP dest; IF CC R0 = P0;

Conditional Branch Conditional Register Move

Condition Code (CC) Flag (II)

1. A conditional branch is resolved by the value in CC.
2. A Data register value may be copied into CC, and the

value in CC may be copied to a Data register.
3. The BITTST instruction accesses the CC flag.
4. A status flag may be copied into CC, and the value in

CC may be copied to a status flag.
5. The CC flag bit may be set to the result of a Pointer

register comparison.
6. The CC flag bit may be set to the result of a Data

register comparison.
7. Some shifter instructions (rotate or BXOR) use CC as

a portion of the shift operand/result.
8. Test and set instructions can set and clear the CC bit.

UTN-FRBA 2011 Eng. Julian S. Bruno

Branches (III)

 Direct Short and Long Jumps
 Direct Call
 Indirect Branch and Call
 PC-Relative Indirect Branch and Call
 Subroutines
 Condition Code Flag
 Branch Prediction

UTN-FRBA 2011 Eng. Julian S. Bruno

Branch Prediction

 Static branch strategy based on CC state.

UTN-FRBA 2011 Eng. Julian S. Bruno

/* previous instructions */

If CC JUMP dest (bp)

/* following instructions */

dest:

/* branch instructions */

Predicted-taken (bp)

/* previous instructions */

If CC JUMP dest

/* following instructions */

dest:

/* branch instructions */

Predicted-not-taken (default)

Branch Prediction (II)

True

Not-taken Taken

Prediction
Not-taken 0 8

Taken 8 4

Branch latency (CPU cycles)

Typically, code analysis shows that a good default condition is
to predict branch-taken for branches to a prior address
(backwards branches), and to predict branch-not-taken for
branches to subsequent addresses (forward branches).

Conclusion

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (II)
 The sequencer supports a mechanism of zero-

overhead looping.
 The sequencer contains two loop units, each

containing three registers:
 Loop Top register (LT0, LT1)

Holds the address of the first instruction within a loop.
 Loop Bottom register (LB0,LB1)

Holds the address of the last instruction of the loop.
 Loop Count register (LC0, LC1).

Maintains a count of the remaining iterations of the loop.

 Loop unit 1 has a higher priority than loop unit 0.
 Loop unit 1 is used for the inner loop and loop

unit 0 is used for the outer loop.
UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (II)
 The sequencer supports a mechanism of zero-

overhead looping.
 The sequencer contains two loop units, each

containing three registers:
 Loop Top register (LT0, LT1)

Holds the address of the first instruction within a loop.
 Loop Bottom register (LB0,LB1)

Holds the address of the last instruction of the loop.
 Loop Count register (LC0, LC1).

Maintains a count of the remaining iterations of the loop.

 Loop unit 1 has a higher priority than loop unit 0.
 Loop unit 1 is used for the inner loop and loop

unit 0 is used for the outer loop.
UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (III)

 The processor supports a 4-location instruction
loop buffer that reduces instruction fetches
while in loops.

 If the loop code is <=4 instructions, then no
fetches to instruction memory are necessary.

 The loop buffer effectively eliminates the
instruction fetch time in loops with more than 4
instructions by allowing fetches to take place
while instructions in the loop buffer are being
executed.

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (IV)

 The LSETUP instruction can be used to load all
three registers of a loop unit at once.

 Each loop register can also be loaded individually
with a register transfer

 Loading individually incurs a significant overhead.

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (V)
Some restrictions

 A 4-cycle latency occurs on the first loopback when
the LSETUP specifies a nonzero start offset
(lp_start).

 The processor has no restrictions regarding which
instructions can occur in a loop end position.
Branches and calls are allowed in that position.

First/Last
Address of the

Loop

PC-Relative Offset Used to
Compute the Loop Start Address

Effective Range of the Loop
Start Instruction

Top / First 5-bit signed immediate; must be a
multiple of 2.

0 to 30 bytes away from LSETUP
instruction.

Bottom / Last 11-bit signed immediate; must be a
multiple of 2.

0 to 2046 bytes away from
LSETUP instruction (the defined
loop can be 2046 bytes long).

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (VI)
Loop Unrolling

 Loops are often unrolled in order to pass only N-1
times.
 The initial data fetch is executed before the loop is entered.
 The final calculations are done after the loop terminates.

 This technique has two advantage:
 Data is fetched exactly N times
 I-Registers have their initial value after processing.

 The “algorithm” sequence can be executed multiple
times without any need to initialize DAG-Registers
again.

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (VI)
Loop Unrolling

 Loops are often unrolled in order to pass only N-1
times.
 The initial data fetch is executed before the loop is entered.
 The final calculations are done after the loop terminates.

 This technique has two advantage:
 Data is fetched exactly N times
 I-Registers have their initial value after processing.

 The “algorithm” sequence can be executed multiple
times without any need to initialize DAG-Registers
again.

#define N 1024

// setup
I0.H = 0xFF80; I0.L = 0x0000; B0 = I0; L0 = N*2 (Z);
I1.H = 0xFF90; I1.L = 0x0000; B1 = I1; L1 = N*2 (Z);
P5 = N-1 (Z);

// algorithm

A0 = 0 || R0.H = W[I0++] || R1.L = W[I1++];

LSETUP (lp,lp) LC0 = P5;
lp: A0+= R0.H * R1.L || R0.H = W[I0++] || R1.L = W[I1++];

A0+= R0.H * R1.L;

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (VII)
Saving and Resuming Loops

 Is needed an special care when:
 If the loop is interrupted by an interrupt service routine

that also contains a hardware loop and requires the same
loop unit.

 If the loop is interrupted by a preemptive task switch.
 If the loop contains a CALL instruction that invokes an

unknown subroutine that may have local loops.

 This environment can be saved and restored by
pushing and popping the loop registers.

 This takes multiple cycles, as the loop buffers must
also be prefilled again.

UTN-FRBA 2011 Eng. Julian S. Bruno

Hardware Loops (VII)
Saving and Resuming Loops

 Is needed an special care when:
 If the loop is interrupted by an interrupt service routine

that also contains a hardware loop and requires the same
loop unit.

 If the loop is interrupted by a preemptive task switch.
 If the loop contains a CALL instruction that invokes an

unknown subroutine that may have local loops.

 This environment can be saved and restored by
pushing and popping the loop registers.

 This takes multiple cycles, as the loop buffers must
also be prefilled again.

lhandler:

….. //Save other registers here

[--SP] = LC0; // save loop 0
[--SP] = LB0;
[--SP] = LT0;

….. //Handler code here

LT0 = [SP++];
LB0 = [SP++];
LC0 = [SP++]; /* This will cause a “replay,”

that is, a ten-cycle refetch. */

….. //Restore other registers here

RTI;
UTN-FRBA 2011 Eng. Julian S. Bruno

Recommended bibliography

 Blackfin Processor Programming Reference,
Revision 1.3, September 2008
 Ch4: PROGRAM SEQUENCER
 Ch7: PROGRAM FLOW CONTROL
 Ch10: STACK CONTROL

 WS Gan, SM Kuo. Embedded Signal Processing
with the MSA. John Wiley and Sons. 2007
 Ch 6: Introduction to the Blackfin Processor

 NOTE: Many images used in this presentation were extracted from the recommended bibliography.

UTN-FRBA 2011 Eng. Julian S. Bruno

Thank you!

Questions?

UTN-FRBA 2011Eng. Julian S. Bruno

	Slide Number 1
	Architecture
	Core Architecture – BF53X
	Control Units – BF53X
	Program Sequencing and Interrupt Processing Block Diagram�
	Program Flow
	Program Flow Variations
	Instruction Pipeline
	Instruction Pipeline (II)
	Instruction Pipeline (III)
	Instruction Pipeline (IV)
	Branches
	Branches (II)
	Branches (III)
	Direct Short and Long Jumps
	Branches (III)
	Direct Call
	Branches (III)
	Indirect Branch and Call
	Branches (III)
	PC-Relative Indirect Branch and Call
	Branches (III)
	Subroutines
	Subroutines - Leaf functions
	Subroutines - No leaf functions
	Managing the Stack
	Subroutines - Parameter Passing
	Subroutines �Link and Unlink Code Sequencer
	Subroutines �Link and Unlink Code Sequencer
	Branches (III)
	Condition Code (CC) Flag
	Condition Code (CC) Flag (II)
	Branches (III)
	Branch Prediction
	Branch Prediction (II)
	Hardware Loops
	Hardware Loops (II)
	Hardware Loops (II)
	Hardware Loops (III)
	Hardware Loops (IV)
	Hardware Loops (V)�Some restrictions
	Hardware Loops (VI) �Loop Unrolling
	Hardware Loops (VI) �Loop Unrolling
	Hardware Loops (VII)�Saving and Resuming Loops
	Hardware Loops (VII)�Saving and Resuming Loops
	Recommended bibliography
	Questions?

