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Stochastic Processes

 The term “stochastic process” is broadly used to 
describe a random process that generates 
sequential signals such as speech or noise. 

 In signal processing terminology, a stochastic 
process is a probability model of a class of 
random signals, e.g. Gaussian process, Markov 
process, Poisson process,etc.
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Stationary and Non-Stationary 
Random Processes

 The amplitude of a signal x(m) fluctuates with 
time m, the characteristics of the process that 
generates the signal may be time-invariant 
(stationary) or time-varying (non-stationary). 

 A process is stationary if the parameters of the 
probability model of the process are time 
invariant; otherwise it is non-stationary.
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Strict-Sense Stationary Processes

 A random process X(m) is stationary in a strict 
sense if all its distributions and statistical 
parameters such as the mean, the variance, the 
power spectral composition and the higher-order 
moments of the process, are time-invariant.
 E[x(m)] = μx ; mean
 E[x(m)x(m + k)] = rxx(k) ; variance
 E[|X(f,m)|2] = E[|X(f)|2] = Pxx(f) ; power spectrum
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Wide-Sense Stationary Processes

 A process is said to be wide sense stationary
if the mean and the autocorrelation functions 
of the process are time invariant:

 E[x(m)] = μx

 E[x(m)x(m + k)]= rxx (k)
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Non-Stationary Processes

 A random process is non-stationary if its distributions or 
statistics vary with time. 

 Most stochastic processes such as video signals, audio 
signals, financial data, meteorological data, biomedical 
signals, etc., are nonstationary, because they are generated 
by systems whose environments and parameters vary over 
time.
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Adaptive Filters

 An adaptive filter is in reality a nonlinear device, 
in the sense that it does not obey the principle of 
superposition.

 Adaptive filters are commonly classified as:
 Linear 

An adaptive filter is said to be linear if the estimate of 
quantity of interest is computed adaptively (at the output of 
the filter) as a linear combination of the available set of 
observations applied to the filter input.

 Nonlinear
Neural Networks
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Linear Filter Structures

 The operation of a linear adaptive filtering algorithm involves 
two basic processes: 
 a filtering process designed to produce an output in response to a 

sequence of input data
 an adaptive process, the purpose of which is to provide mechanism 

for the adaptive control of an adjustable set of parameters used in the 
filtering process.

 These two processes work interactively with each other.
 There are three types of filter structures with finite memory : 

 transversal filter,
 lattice predictor, 
 and systolic array.
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Linear Filter Structures

 For stationary inputs, the resulting solution is commonly 
known as the Wiener filter, which is said to be optimum in 
the mean-square sense. 

 A plot of the mean-square value of the error signal vs. the 
adjustable parameters of a linear filter is referred to as the 
error-performance surface.

 The minimum point of this surface represents the Wiener 
solution.

 The Wiener filter is inadequate for dealing with situations in 
which non-stationarity of the signal and/or noise is intrinsic to 
the problem. 

 A highly successful solution to this more difficult problem is 
found in the Kalman filter, a powerful device with a wide 
variety of engineering applications.
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Transversal Filter
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Lattice Predictor

It has the advantage of simplifying the computation
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Systolic Array

The use of systolic arrays has made
it possible to achieve a high throughput, 
which is required for many advanced signal-
processing algorithms to operate
in real time
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Linear Adaptive Filtering Algorithms

 Stochastic Gradient Approach
 Least-Mean-Square (LMS) algorithm
 Gradient Adaptive Lattice (GAL) algorithm

 Least-Squares Estimation
 Recursive least-squares (RLS) estimation
 Standard RLS algorithm
 Square-root RLS algorithms
 Fast RLS algorithms
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Wiener Filters

 The design of a Wiener filter requires a priori 
information about the statistics of the data to be 
processed.

 The filter is optimum only when the statistical 
characteristics of the input data match the a priori 
information on which the design of the filter is 
based. 

 When this information is not known completely, 
however, it may not be possible to design the 
Wiener filter or else the design may no longer be 
optimum.
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Wiener Filters: Least Square 
Error Estimation

 The filter input–output relation is given by:

 The Wiener filter error signal, e(m) is defined as the 
difference between the desired signal x(m) and the filter 
output signal xˆ (m) :

 error signal e(m) for N samples of the signals x(m) and y(m):
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Wiener Filters: Least Square 
Error Estimation
 The Wiener filter coefficients are obtained by minimising 

an average squared error function E[e2(m)] with respect 
to the filter coefficient vector w

 Ryy=E [y(m)yT(m)] is the autocorrelation matrix of the 
input signal 

 rxy=E [x(m)y(m)] is the cross-correlation vector of the 
input and the desired signals
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Wiener Filters: Least Square 
Error Estimation
 For example, for a filter with only two coefficients (w0, 

w1), the mean square error function is a bowl-shaped 
surface, with a single minimum point
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Wiener Filters: Least Square 
Error Estimation

 The gradient vector is defined as

 Where the gradient of the mean square error function with 
respect to the filter coefficient vector is given by

 The minimum mean square error Wiener filter is obtained by 
setting equation to zero
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Wiener Filters: Least Square 
Error Estimation

 The calculation of the Wiener filter coefficients requires the 
autocorrelation matrix of the input signal and the 
crosscorrelation vector of the input and the desired 
signals.

 The optimum w value is wo = Ryy
-1 ryx
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The LMS Filter

 A computationally simpler version of the gradient search 
method is the least mean square (LMS) filter, in which the 
gradient of the mean square error is substituted with the 
gradient of the instantaneous squared error function.

 Note that the feedback equation for the time update of the 
filter coefficients is essentially a recursive (infinite impulse 
response) system with input μ[y(m)e(m)] and its poles at α.
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The LMS Filter

 The LMS adaptation method is defined as

 The instantaneous gradient of the squared error can be 
expressed as

 Substituting this equation into the recursion update equation 
of the filter parameters, yields the LMS adaptation equation
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The LMS Filter

 The main advantage of the LMS algorithm is its simplicity 
both in terms of the memory requirement and the 
computational complexity which is O(P), where P is the filter 
length

 Leaky LMS Algorithm 
 The stability and the adaptability of the recursive LMS adaptation can 

improved by introducing a so-calledleakage factor α as

w(m +1) =α.w(m) + μ.[y(m).e(m)]

 When the parameter α<1, the effect is to introduce more stability and 
accelerate the filter adaptation to the changes in input signal 
characteristics.
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LMS Algorithm

Wk=zeros(1,L+1); % Vector Inicial de Pesos
yk=zeros(size(xk)); % Señal de salida inicial del FIR
ek=zeros(size(xk)); % Señal inicial de error

for i=L+1:N-1
for n=1:L+1

xk_i(1,n)=xk(i+1-n); % Vector x i-ésimo
end
yk(i)=xk_i*Wk'; % señal a la salida del FIR
ek(i)=dk(i)-yk(i); % Señal de error
Wk=Wk+2*mu*ek(i)*xk_i;  % Vector de pesos i-ésimo

end
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Identification

System identification
Layered earth modeling
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Inverse modeling

Predictive deconvolution
Adaptive equalization
Blind equalization
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Prediction

Linear predictive coding
Adaptive differential pulse-code modulation
Autoregressive spectrum analysis
Signal detection
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Interference canceling

Adaptive noise canceling
Echo cancelation
Adaptive beamforming
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Recommended bibliography

 Saeed V. Vaseghi, Advanced Digital Signal Processing and 
Noise Reduction, Second Edition. John Wiley & Sons Ltd.
 Ch 3: Probabilistic Models
 Ch 6: Wiener Filters
 Ch 7: Adaptive Filters
 Ch 8: Linear Prediction Models

 Stergios Stergiopoulos, Advanced Signal Processing 
Handbook. CRC Press LLC, 2001
 Ch 2: Adaptive Systems for Signal Process - Simon Haykin

 B Farhang-Boroujeny. Adaptive Filters. Theory and 
Applications. John Wiley & Sons.

 NOTE: Many images used in this presentation were extracted from the recommended bibliography.
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Thank you!

Questions?
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