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A brief overview

Laplace Transform
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The fundamental process of using 
the Laplace transform

 A time-domain differential equation is written that 
describes the input/output relationship of a physical 
system (and we want to find the output function that 
satisfies that equation with a given input).

 The differential equation is Laplace transformed, 
converting it to an algebraic equation.

 Standard algebraic techniques are used to 
determine the desired output function's equation in 
the Laplace domain.

 The desired Laplace output equation is, then, 
inverse Laplace transformed to yield the desired 
time-domain output function's equation.
Marquis Pierre Simon de Laplace's (1749–1827)
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Laplace transform

 We can say that LT requires us to multiply, point for 
point, the function f(t) by the complex function e–st for 
a given value of s.

 After that, we find the area under the curve of the 
function f(t)e–st by summing all the products.

 That area is a complex number.
 We were to go through this process for all values of s, 

we'd have a full description of F(s) for every value of s.
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Laplace transform (II)

 The complex value of LT for a particular value of s 
is a correlation of f(t) and a damped complex e–st

sinusoid whose frequency is ω and whose 
damping factor is σ.

 Laplace transform is a more general case of the 
Fourier transform. (σ=0) 
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Real part (cosine) of various e–st

functions
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Poles and Zeros on the s-Plane
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Introduction

Z Transform
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Z Transform

 The Z transform is quite a trivial 
algorithm. Each sample multiplied 
by the complex variable z at the 
power equal to its delay.

 z is a complex variable with a 
modulus ‘r’ and an argument ‘ω’ 
(frequency).

 The inverse transform is done 
(typically) by simple fraction 
expansion method and a table of 
transforms.

 In real time applications, systems 
are causal, thus Z transform is 
always unillateral being 0 the lower 
summation limit.

n samples 
delay

UTN-FRBA 2010 Eng. Julian S. Bruno



Z Transform

 Z transform is the discrete 
counterpart of Laplace 
transform.

 A vector in the Z plane have a 
Frequency equal to  its 
argument and a damping 
equal to his modulo.

 It is used to show the 
behavior of digital systems.

 Similar to the continuous 
domain, DFT is a particular 
case of Z transform. Which 
case?
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Z plane important places
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Pole locations and Time-domain
impulse responses

S-plane Z-plane
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Particular Case – Fourier Transform
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DTFT



Z Plane System representation

 Difference equation form is useful to implement
the system (i.e. DSP, Matlab, etc.)

 Transfer function is useful to design and analyze
system’s behavior by zero/pole placement/location.

Transfer Function

Difference 
equation
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Example: A notch filter

 A notch filter is a system that rejects only a 
particular frequency.

 This is equivalent to place a zero in this particular 
frequency, and a pole very close to the zero.
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Pole/Zero Plot

Frequency response of a notch filter
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Thank you!

Questions?
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