Real Time

 DIGITAL Signal PROCESSING
UTN-FRBA 2010

Eng. Julian Bruno

Frequency Analysis

Fast Fourier Transform (FFT)

Fast Fourier Transform

DFT: $\quad X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad k=0,1, \ldots, N-1$,
N^{2} complex multiplications
$N(N-1)$ complex aditions

$$
\begin{aligned}
X[k]= & \sum_{n=0}^{N-1}\left[\left(\mathcal{R e}\{x[n]\} \mathcal{R e}\left\{W_{N}^{k n}\right\}-\mathcal{J} m\{x[n]\} \mathcal{J} m\left\{W_{N}^{k n}\right\}\right)\right. \\
& +j\left(\operatorname{Re}\{x[n]\} \mathcal{J} m\left\{W_{N}^{k n}\right\}+\mathcal{J} m\{x[n]\} \mathcal{R e}\left\{W_{N}^{k n}\right)\right], \\
& k=0,1, \ldots, N-1,
\end{aligned}
$$

$$
4 N^{2} \text { real multiplications }
$$

$4 N^{2}$ real multiplications
$N(4 N-1)$ real aditions

1. $W_{N}^{k[N-n]}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}$
2. $W_{N}^{k n}=W_{N}^{k(n+N)}=W_{N}^{(k+N) n}$
(complex conjugate symmetry); (periodicity in n and k).

Computational algorithms that exploit both the symmetry and the periodicity of the sequence $W_{N}{ }^{k n}$ has come to be know as the fast Fourier transform, or FFT.

Applying the properties of symmetry and periodicity to $\mathrm{W}_{\mathrm{N}}{ }^{r}$ for $\mathrm{N}=8$

Decimation-In-Time FFT algorithms

$$
\begin{aligned}
& X[k]=\sum_{n \text { even }} x[n] W_{N}^{n k}+\sum_{n \text { odd }} x[n] W_{N}^{n k} \\
& X[k]=\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N}^{2 r k}+\sum_{r=0}^{(N / 2)-1} x\left[2 r+1 W_{N}^{(2 r+1) k}\right. \\
& =\sum_{r=0}^{(N / 2)-1} x[2 r]\left(W_{N}^{2}\right)^{r k}+W_{N}^{k} \sum_{r=0}^{(N / 2)-1} x[2 r+1]\left(W_{N}^{2}\right)^{r k} \\
& W_{N}^{2}=e^{-2 j(2 \pi / N)}=e^{-j 2 \pi /(N / 2)}=W_{N / 2} \\
& X[k]=\sum_{r=0}^{(N / 2)-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2)-1} x[2 r+1] W_{N / 2}^{r k} \\
& =G[k]+W_{N}^{k} H[k], \quad k=0,1, \ldots, N-1 .
\end{aligned}
$$

Decimation-In-Time FFT algorithms

$$
G[k]=\sum_{r=0}^{(N / 2)-1} g[r] W_{N / 2}^{r k}=\sum_{\ell=0}^{(N / 4)-1} g[2 \ell] W_{N / 2}^{2 \ell k}+\sum_{\ell=0}^{(N / 4)-1} g[2 \ell+1] W_{N / 2}^{(2 \ell+1) k}
$$

or

$$
G[k]=\sum_{\ell=0}^{(N / 4)-1} g[2 \ell] W_{N / 4}^{\ell k}+W_{N / 2}^{k} \sum_{\ell=0}^{(N / 4)-1} g[2 \ell+1] W_{N / 4}^{\ell k}
$$

Similarly, $H[k]$ would be represented as

$$
H[k]=\sum_{\ell=0}^{(N / 4)-1} h[2 \ell] W_{N / 4}^{\ell k}+W_{N / 2}^{k} \sum_{\ell=0}^{(N / 4)-1} h[2 \ell+1] W_{N / 4}^{\ell k}
$$

Decimation-In-Time FFT algorithms

$N \log _{2} N$ complex multiplications and complex aditions

$$
W_{N}^{r+N / 2}=W_{N}^{N / 2} W_{N}^{r}=-W_{N}^{r} .
$$

$N / 2 \log _{2} N$ complex multiplications and $N \log _{2} N$ complex aditions

\square The FFT is simply an algorithm for efficiently calculating the DFT

\square Computational efficiency of an N-Point FFT:

- DFT:
N^{2}
- FFT:
($\mathrm{N} / 2$) $\log _{2}(\mathrm{~N})$
Complex Multiplications
Complex Multiplications

N	DFT Multiplications	FFT Multiplications	FFT Efficiency
256	65,536	1,024	$64: 1$
512	262,144	2,304	$114: 1$
1,024	$1,048,576$	5,120	$205: 1$
2,048	$4,194,304$	11,264	$372: 1$
4,096	$16,777,216$	24,576	$683: 1$

Bit Reversal

\square Decimal Number:	0	1	2	3	4	5	6	7
\square Binary Equivalent:	000	001	010	011	100	101	110	111
\square Bit-Reversed Binary :	000	100	010	110	001	101	011	111
\square Decimal Equivalent :	0	4	2	6	1	5	3	7

\square The bit reversal algorithm used to perform the re-ordering of signals.
\square The decimal index, n, is converted to its binary equivalent.
\square The binary bits are then placed in reverse order, and converted back to a decimal number.
\square Bit reversing is often performed in DSP hardware in the data address generator (DAG).

DIT FFT

- Input signal must be properly re-ordered using a bit reversal algorithm
- In-place computation
- Number of stages: $\log _{2} \mathrm{~N}$
- Stage 1: all the twiddle factors are 1
- Last Stage: the twiddle factors are in sequential order
\(\left.$$
\begin{array}{|lcccc|}\hline & \begin{array}{c}\text { Stage } \\
1\end{array} & \begin{array}{c}\text { Stage } \\
2\end{array} & \begin{array}{c}\text { Stage } \\
3\end{array} & \begin{array}{c}\text { Stage } \\
\log _{2} \mathrm{~N}\end{array} \\
\begin{array}{l}\text { Number of } \\
\text { Groups }\end{array} & \mathrm{N} / 2 & \mathrm{~N} / 4 & \mathrm{~N} / 8 & 1 \\
\begin{array}{l}\text { Butterflies per } \\
\text { Group }\end{array} & 1 & 2 & 4 & \mathrm{~N} / 2 \\
\begin{array}{l}\text { Dual-Node } \\
\text { Spacing }\end{array} & 1 & 2 & 4 & \mathrm{~N} / 2 \\
\begin{array}{l}\text { Twiddle } \\
\text { Factor } \\
\text { Exponents }\end{array} & \begin{array}{l}(\mathrm{N} / 2) \mathrm{k}, \\
\mathrm{k}=0\end{array} & \begin{array}{l}(\mathrm{N} / 4) \mathrm{k}, \\
\mathrm{k}=0,1\end{array} & \begin{array}{l}(\mathrm{N} / 8) \mathrm{k}, \\
\mathrm{k}=0,1, \\
2,3\end{array}
$$ \& \mathrm{k},

\mathrm{k}=0 to

\mathrm{N} / 2-1\end{array}\right]\)| |
| :--- |

Eng. Julian S. Bruno

Radix-4 Decimation-In-Time FFT Algorithm

-A radix-4 FFT combines two stages of a radix-2 FFT into one, so that half as many stages are required.
-The radix-4 butterfly is consequently larger and more complicated than a radix-2 butterfly.

- $\mathrm{N} / 4$ butterflies are used in each of $\left(\log _{2} \mathrm{~N}\right) / 2$ stages, which is one quarter the number of butterflies in a radix-2 FFT.
-Addressing of data and twiddle factors is more complex, a radix-4 FFT requires fewer calculations than a radix-2 FFT.
-It can compute a radix-4 FFT significantly faster than a radix-2 FFT

Hardware benchmark comparisons

ADSP-2189M, 16-bit, Fixed-Point @ 75MHz

- 453 $\mu \mathrm{s}$ (1024-Point)
\square ADSP-21160 SHARC ${ }^{\text {TM }}$, 32-bit, Floating-Point @ 100MHz
- 180 $\mu \mathrm{s}$ (1024-Point), 2 channels, SIMD Mode
- 115 μ s (1024-Point), 1 channel, SIMD Mode
- ADSP-TS001 TigerSHARC․ ${ }^{\text {@ }}$ 150MHz,
- 16-bit, Fixed-Point Mode
- $7.3 \mu \mathrm{~s}$ (256-Point FFT)
- 32-bit, Floating-Point Mode
- 69 $\mu \mathrm{s}$ (1024-Point)

Real Time FFT considerations

\square Signal Bandwidth
\square Sampling Frequency, fs
\square Number of Points in FFT, N
\square Frequency Resolution = fs/N
\square Maximum Time to Calculate N-Point FFT = N/fs
\square Fixed-Point vs. Floating Point DSP
\square Radix-2 vs. Radix-4 Execution Time
\square Windowing Requirements

Implementation DIT FFT in ADSP 2181 First Stage

```
10 = inplacereal;
11 = inplacereal + 1;
i2 = inplaceimag;
i3 = inplaceimag + 1;
m2 = 2;
cntr = nover2;
ax0 = dm(i0,m0);
ay0}=\operatorname{dm}(11,m0)
ay1 = dm(i3,m0);
```

do group_lp until ce;
$\mathrm{ar}=\mathrm{ax} 0+\mathrm{ay} 0, \quad \mathrm{ax} 1=\operatorname{dm}(12, \mathrm{mo}) ; \quad / / \mathrm{ar}=\mathrm{x} 0+\mathrm{x} 1, \quad \mathrm{ax} 1=\mathrm{y} 0$
$\mathrm{sb}=$ expadj ar, $\mathrm{dm}(10, \mathrm{~m} 2)=\mathrm{ar} ; \quad / /$ Check for bit growth, $\mathrm{x} 0^{\prime}=\mathrm{x} 0+\mathrm{x} 1$
ar=ax0-ay0;
sb=expadj ar; //Check for bit growth
$\operatorname{dm}(11, \mathrm{~m} 2)=a r$, ar=ax $1+\mathrm{ay} 1 ; \quad / / \mathrm{x} 1^{\prime}=\mathrm{x} 0-\mathrm{x} 1$, ar=y0+y1
$s b=e x p a d j$ ar, $d m(12, m 2)=a r ; \quad / /$ Check for bit growth, y0 $=y 0+y 1$
$a r=a x 1-a y 1, a x 0=d m(10, m 0) ; \quad / / a r=y 0-y 1, a x 0=$ next $x 0$
$\mathrm{sb}=$ expadj ar, $\mathrm{dm}(13, \mathrm{~m} 2)=a r ; \quad / /$ Check for bit growth, y $1^{\prime}=y 0-y 1$
ay $0=d m(11, m 0)$;
ay $1=\operatorname{dm}(i 3, m 0) ;$

$$
\begin{aligned}
& / / \text { entr= } / 2 \\
& / / a x 0=x 0 \\
& / / \text { ay } 0=x 1 \\
& / / \text { ay } 1=y 1
\end{aligned}
$$

//ar=x0-x1
//ay0= next x1

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{N}}=\mathrm{e}^{-\mathrm{j} 2 \pi / \mathrm{N}=} \cos (2 \pi / \mathrm{N})-\mathrm{j} \sin (2 \pi / \mathrm{N}) \\
& \mathrm{W}_{\mathrm{N}}=\mathrm{C}+\mathrm{j}(-\mathrm{S})
\end{aligned}
$$

$$
A=(C) x_{1}-(-S) y_{1}
$$

$$
B=\text { (C) } y_{1}+(-S) x_{1}
$$

$$
\mathrm{x}_{0}{ }^{\prime}=\mathrm{x}_{0}+\mathrm{A} \quad \mathrm{y}_{0}{ }^{\prime}=\mathrm{y}_{0}+\mathrm{B}
$$

$$
\mathrm{x}_{1}{ }^{\prime}=\mathrm{x}_{0}-\mathrm{A} \quad \mathrm{y}_{1}{ }^{\prime}=\mathrm{y}_{0}-\mathrm{B}
$$

group_lp:
bfp_adj;

Implementation DIT FFT in ADSP 2181 Butterfly Loop

```
I4=twid_real;
```

I4=twid_real;
I5=twid_imag;
I5=twid_imag;
CNTR=DM(b)
CNTR=DM(b)
MYO=PM(I4,M4),MXO=DM(I1,MO);
MYO=PM(I4,M4),MXO=DM(I1,MO);
MY 1=PM (I5,M4),MX1=DM (I3,M0);
MY 1=PM (I5,M4),MX1=DM (I3,M0);
//I4 --> C OE WO
//I4 --> C OE WO
//I5 --> (-S) Of WO
//I5 --> (-S) Of WO
//CNTR = butterfly counter
//CNTR = butterfly counter
//MYO=C, MXO= X1
//MYO=C, MXO= X1
//MY 1=-S,MX1=y1
//MY 1=-S,MX1=y1
DO bfly_loop UNTIL CE;
DO bfly_loop UNTIL CE;
MR=\overline{MXO*MY1 (SS) , AXO=DM (IO,MO);}
MR=\overline{MXO*MY1 (SS) , AXO=DM (IO,MO);}
MR=MR+MX1*MYO (RND), AXI=DM (I2,M0);
MR=MR+MX1*MYO (RND), AXI=DM (I2,M0);
AY1=MR1,MR=MXO*MYO (SS);
AY1=MR1,MR=MXO*MYO (SS);
MR=MR-MX1*MY1 (RND);
MR=MR-MX1*MY1 (RND);
AYO=MR1,AR=AX1-AY1;
AYO=MR1,AR=AX1-AY1;
SB=EXPADJ AR, DM (I3,MI)=AR;
SB=EXPADJ AR, DM (I3,MI)=AR;
AR=AXO-AY0,MX1=DM(I3,M0),MY1=PM(I5,M4);
AR=AXO-AY0,MX1=DM(I3,M0),MY1=PM(I5,M4);
SB=EXPADU AR, DM (I1,MI)=AR;
SB=EXPADU AR, DM (I1,MI)=AR;
AR=AXO+AYO,MXO=DM(I1,MO),MYO=PM(I4,M4);
AR=AXO+AYO,MXO=DM(I1,MO),MYO=PM(I4,M4);
SB=EXPADJ AR,DM(IO,M1)=AR;
SB=EXPADJ AR,DM(IO,M1)=AR;
AR=AX1+AY1;
AR=AX1+AY1;
bfly_loop: SB=EXPADJ AR,DM(I2,M1)=AR;

```
bfly_loop: SB=EXPADJ AR,DM(I2,M1)=AR;
```


Implementation DIT FFT in ADSP 2181 Block Floating-Point Scaling Routine

bfp_adj:

AY0=CNTR;
$\mathrm{AR}=\mathrm{AY} 0-1$;
IT EQ RTS;
$A Y 0=-2$;
$\mathrm{AXO}=\mathrm{SB}$;
$\mathrm{AR}=\mathrm{AXO}-\mathrm{AY} 0$;
II EQ RTS;
I0=inplacereal;
I1=inplacereal;
$\mathrm{AYO}=-1$;
MY0 $=0 \times 4000$;
$\mathrm{AR}=\mathrm{AXO}-\mathrm{AYO}, \mathrm{MX} 0=\mathrm{DM}(\mathrm{I} 0, \mathrm{M1})$;
II EQ JuMP strt_shift;
$A Y 0=-2$;
MY0 $=0 \times 2000$;
strt_shift:
CNTR=2047;
DO shift_loop UNTII CE;
$M \mathrm{M}=\mathrm{MX0} \star_{\mathrm{MYO}}($ RND $), \mathrm{MX0}=\mathrm{DM}(I 0, \mathrm{M} 1)$;
shift_loop: DM(I1,M1)=MR1;
MR=MX0*MYO (RND) ;
$\mathrm{AYO}=\mathrm{DM}$ (blk exponent) ;
$\mathrm{DM}(\mathrm{I} 1, \mathrm{M} 1)=\overline{\mathrm{MR}} 1, \mathrm{AR}=\mathrm{AY} 0-\mathrm{AX} 0$;
DM(blk_exponent) =AR;
sb $=-\overline{2}$;
RTS;
bfpadjend: 2010
//\{Check for last stage\}
//\{If last stage, return\}
//\{Check for $\mathrm{SB}=-2$ \}
//\{IF $\mathrm{SB}=-2$, no bit growth, return\}
//\{IO=read pointer\}
//\{I1=wとite pointer\}
//\{set MY0 to shift 1 bit right\}
//\{Check if $\mathrm{SB}=-1$; Get first sample\}
//\{If $\mathrm{SB}=-1$, shift block data 1 bit \}
//\{set Ay0 for block exponent update\}
//\{set MY0 to shift 2 bits right\}
//\{initialize loop counter\}
//\{Shift block of data\}
//\{MR=shifted data, $\mathrm{MXO}=$ next value \}
//\{Unshifted data=shifted data\}
//\{Shift last data word\}
//\{Update block exponent and\}
//\{store last shifted sample\}

$$
\begin{aligned}
& A=(C) x_{1}-(-S) y_{1} \\
& B=(C) y_{1}+(-S) x_{1} \\
& x_{0}^{\prime}=x_{0}+A \\
& y_{0}^{\prime}=y_{0}+B \\
& x_{1}^{\prime}=x_{0}-A \\
& y_{1}^{\prime}=y_{0}-B \\
& x_{0}^{\prime}<1, y_{0}^{\prime}<1 \\
& \left|C_{\max }\right|=1,\left|S_{\max }\right|=1 \\
& x_{0}^{\prime}=x_{0}+x_{1}+y_{1}<1 \\
& x_{0}<0.33, x_{1}<0.33, y_{1}<0.33 \\
& y_{0}^{\prime}=y_{0}+y_{1}-x_{1}<1
\end{aligned}
$$

$$
0.33=0 \times 2 A 3 D
$$

Eng. Julian S. Bruno

Implementation DIT FFT in ADSP 2181 Scramble Routine

scramble:

```
    I4=inputreal;
    IO=inplacereal;
    M4=1;
    MO=mod_value;
    L4=0;
    LO=0;
    cntr = N;
    ENA BIT_REV; //{Enable bit-reversed outputs on DAG1}
    DO brev UNTIL CE;
        AY1=DM(I4,M4); //{Read sequentially ordered data}
    DM(IO,MO)=AY1; //{Write data in bit-reversed location}
    DIS BIT_REV; //{Disable bit-reverse}
    RTS; //{Return to calling program}
//{I4-->sequentially ordered data}
//{IO-->scrambled data}
//{MO=modifier for reversing N bits}
```

brev:
scramble. end:

