
REAL TIME
DIGITAL
SIGNAL

PROCESSING

Eng. Julian BrunoUTN-FRBA 
2010

Eng. Julian S. Bruno



Fast Fourier Transform (FFT)

Frequency Analysis

UTN-FRBA 2010 Eng. Julian S. Bruno



Fast Fourier Transform

UTN-FRBA 2010 Eng. Julian S. Bruno

N2 complex multiplications

N(N-1) complex aditions

4N2 real multiplications

N(4N-1) real aditions

Computational algorithms that exploit both the symmetry and 
the periodicity of the sequence WN

kn has come to be know as the 
fast Fourier transform, or FFT.

DFT:



Applying the properties of symmetry 
and periodicity to WN

r for N=8

UTN-FRBA 2010 Eng. Julian S. Bruno

WN
nk = e–jnk2π/N = cos(2nkπ/N) – j sin(2nkπ/N)  , twiddle factors

W8
0 = e-j(2π/8)0 = cos(0)      – j sin(0)  = +1

W8
1 = e-j(2π/8)1 = cos(π/4)   – j sin(π/4) 

W8
2 = e-j(2π/8)2 = cos(π/2)   – j sin(π/2) 

W8
3 = e-j(2π/8)3 = cos(3π/4) – j sin(3π/4) 

W8
4 = W8

0+4 = -W8
0 = -1

W8
5 = W8

1+4 = -W8
1

W8
6 = W8

2+4 = -W8
2

W8
7 = W8

3+4 = -W8
3

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Index

Twiddle Factors  

 

 
Real
Imag



Decimation-In-Time FFT algorithms I

UTN-FRBA 2010 Eng. Julian S. Bruno



Decimation-In-Time FFT algorithms

UTN-FRBA 2010 Eng. Julian S. Bruno

263
2/

042
2/

21
2/

00
2/

2)2//(2
2/

NNN

NNN

NN

NN

k
N

Nkjk
N

WWW
WWW

WW
WW

WeW

−==

−==

=

=

== − π



Decimation-In-Time FFT algorithms

UTN-FRBA 2010 Eng. Julian S. Bruno

N log2 N complex multiplications and complex aditions

N/2 log2 N complex multiplications and N log2 N complex aditions



FFT vs. DFT

UTN-FRBA 2010 Eng. Julian S. Bruno

 The FFT is simply an algorithm for efficiently 
calculating the DFT

 Computational efficiency of an N-Point FFT:
 DFT: N2 Complex Multiplications
 FFT: (N/2) log2(N) Complex Multiplications

N  DFT Multiplications  FFT Multiplications  FFT Efficiency  

256  65,536  1,024  64 : 1  

512  262,144  2,304  114 : 1  

1,024  1,048,576  5,120  205 : 1  

2,048  4,194,304  11,264  372 : 1  

4,096  16,777,216  24,576  683 : 1  



Bit Reversal

 The bit reversal algorithm used to perform the re-ordering of signals. 
 The decimal index, n, is converted to its binary equivalent. 
 The binary bits are then placed in reverse order, and converted back 

to a decimal number.
 Bit reversing is often performed in DSP hardware in the data 

address generator (DAG).
UTN-FRBA 2010 Eng. Julian S. Bruno



DIT FFT
 Input signal must be properly 
re-ordered using a bit reversal 
algorithm

 In-place computation

 Number of stages: log2 N

 Stage 1: all the twiddle factors 
are 1

 Last Stage: the twiddle factors 
are in sequential order 

Stage 
1

Stage 
2

Stage 
3

Stage 
Log2N

Number of 
Groups N/2 N/4 N/8 1

Butterflies per 
Group 1 2 4 N/2

Dual-Node 
Spacing 1 2 4 N/2

Twiddle 
Factor
Exponents

(N/2)k, 
k=0

(N/4)k,
k=0,1

(N/8)k,
k=0,1,
2,3

k,
k=0 to 
N/2–1

UTN-FRBA 2010 Eng. Julian S. Bruno



DIF FFT
 Output signal must be 
properly re-ordered using a bit 
reversal algorithm

 In-place computation

 Number of stages: log2 N

 Stage 1: the twiddle factors 
are in sequential order

 Last Stage: all the twiddle 
factors are 1

Stage 
1

Stage 
2

Stage 
3

Stage 
Log2N

Number of 
Groups 1 2 4 N/2

Butterflies per 
Group N/2 N/4 N/8 1

Dual-Node 
Spacing N/2 N/4 N/8 1

Twiddle 
Factor
Exponents

n,
n=0 to 
N/2 - 1

2n,
n=0 to 
N/4 - 1

4n,
n=0 to 
N/8 - 1

(N/2)n,
n=0 

UTN-FRBA 2010 Eng. Julian S. Bruno



Radix-4 Decimation-In-Time FFT 
Algorithm

UTN-FRBA 2010 Eng. Julian S. Bruno

A radix-4 FFT combines two stages of a radix-2 
FFT into one, so that half as many stages are 
required. 

The radix-4 butterfly is consequently larger and 
more complicated than a radix-2 butterfly. 

N/4 butterflies are used in each of (log2N)/2 
stages, which is one quarter the number of 
butterflies in a radix-2 FFT. 

Addressing of data and twiddle factors is more 
complex, a radix-4 FFT requires fewer 
calculations than a radix-2 FFT. 

It can compute a radix-4 FFT significantly faster 
than a radix-2 FFT



Hardware benchmark comparisons

 ADSP-2189M, 16-bit, Fixed-Point @ 75MHz
 453μs (1024-Point)

 ADSP-21160 SHARC™, 32-bit, Floating-Point @ 100MHz
 180μs (1024-Point), 2 channels, SIMD Mode
 115μs (1024-Point), 1 channel, SIMD Mode

 ADSP-TS001 TigerSHARC™ @ 150MHz,
 16-bit, Fixed-Point Mode

 7.3μs (256-Point FFT)
 32-bit, Floating-Point Mode

 69μs (1024-Point)

UTN-FRBA 2010 Eng. Julian S. Bruno



Real Time FFT considerations

 Signal Bandwidth
 Sampling Frequency, fs
 Number of Points in FFT, N
 Frequency Resolution = fs/N
 Maximum Time to Calculate N-Point FFT = N/fs
 Fixed-Point vs. Floating Point DSP
 Radix-2 vs. Radix-4 Execution Time
 Windowing Requirements

UTN-FRBA 2010 Eng. Julian S. Bruno



Implementation DIT FFT in ADSP 2181
First Stage

UTN-FRBA 2010 Eng. Julian S. Bruno

WN = e–j2π/N= cos(2π/N)–jsin(2π/N) 
WN= C + j(–S)
A = (C) x1 – (–S )y1
B = (C) y1 + (–S) x1
x0´ = x0 +A     y0´ = y0 + B 
x1´ = x0 – A    y1´ = y0 – BA+jB



Implementation DIT FFT in ADSP 2181
Butterfly Loop

UTN-FRBA 2010 Eng. Julian S. Bruno



Implementation DIT FFT in ADSP 2181 
Block Floating-Point Scaling Routine

UTN-FRBA 2010 Eng. Julian S. Bruno

A = (C) x1 – (–S )y1
B = (C) y1 + (–S) x1
x0´ = x0 +A     
y0´ = y0 + B 
x1´ = x0 – A
y1´ = y0 – B

x0’ < 1 , y0’ < 1
|Cmax| = 1 , |Smax |= 1

x0’ = x0 + x1 + y1 < 1
x0<0.33 , x1<0.33 , y1<0.33

y0’ = y0 + y1 - x1 < 1

0.25

0  0  1  0  X  X  X  X  X  X X  X  X  X  X X

0.33 = 0x2A3D



Implementation DIT FFT in ADSP 2181 
Scramble Routine

UTN-FRBA 2010 Eng. Julian S. Bruno


	Real Time�Digital �Signal �Processing��
	Frequency Analysis
	Fast Fourier Transform
	Applying the properties of symmetry and periodicity to WNr for N=8
	Decimation-In-Time FFT algorithms I
	Decimation-In-Time FFT algorithms
	Decimation-In-Time FFT algorithms
	FFT vs. DFT
	Bit Reversal
	DIT FFT
	DIF FFT
	Radix-4 Decimation-In-Time FFT Algorithm
	Hardware benchmark comparisons
	Real Time FFT considerations
	Implementation DIT FFT in ADSP 2181�First Stage
	Implementation DIT FFT in ADSP 2181 �Butterfly Loop
	Implementation DIT FFT in ADSP 2181 �Block Floating-Point Scaling Routine
	Implementation DIT FFT in ADSP 2181 �Scramble Routine

