
REAL TIME
DIGITAL
SIGNAL

PROCESSING

Eng. Julian BrunoUTN-FRBA
2010

Eng. Julian S. Bruno

Introduction to the Blackfin Processor

Architecture

UTN-FRBA 2010 Eng. Julian S. Bruno

Introduction to MSA

 Micro Signal Architecture (MSA) core was jointly
developed by Intel and Analog Devices Inc (ADI).

 MSA incorporates both DSP and microcontroller
functionalities in a single core.

 MSA include optimizations for high-level language
programming, memory protection, and byte
addressing.

 MSA has a very efficient and dynamic power
management feature.

 Adjuts boyh the voltage delivered to the core and
the frequency at which core runs.

UTN-FRBA 2010 Eng. Julian S. Bruno

Blackfin Processor

 The BF processor is based on the MSA core.
 16-/32-bit embedded processor core with a 10-

stage RISC MCU/DSP pipeline
 Dual MAC signal processing.
 Flexible Single Instruction.
 Multiple Data (SIMD) capabilities.
 Multimedia processing features into a single

instruction set architecture.
 Instruction SRAM, Data SRAM, Data Cache,

Boot ROM, Processor-Specific MMRs
UTN-FRBA 2010 Eng. Julian S. Bruno

ADSP BF53X

UTN-FRBA 2010 Eng. Julian S. Bruno

Core Architecture – BF53X

Address Arithmetic Unit
Memory fetches
Index, length, base, and modify registers
Circular buffering
Pointer Register File, has pointers for addressing operations.
DAG registers
Stack pointer
Frame pointer

Control Units
Program Sequencer
Conditional jumps and subroutine calls
Nested zero-overhead looping
Code density

Data Arithmetic Unit
Two 16-bit MACs
Two 40-bit ALUs
Two 40-bit accumulators (ACC0 and ACC1)
Four 8-bit video ALUs
Single 40-bit barrel shifter
Data register file
Data types include 8-, 16-, or 32-bit signed or unsigned integer
Data types include 16- or 32-bit signed fractional
32-bit reads AND two 32-bit writes (SD, LD0, LD1)

UTN-FRBA 2010 Eng. Julian S. Bruno

Data Arithmetic Unit – BF53X
Six computational units:

Two arithmetic/logic units (ALUs)
Two multiplier/accumulator units (MACs)
Barrel Shifter
Set of video ALUs.

Data Register File:
Eight registers, each 32 bits wide.
Sixteen registers, each 16-bit wide.

Memory:
Read two 32-bit words in each cycle (LD0-1).
Write one 32-bit words in each cycle (SD).

Status

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

 Six computational units:
 Two arithmetic/logic units (ALUs)
 Two multiplier/accumulator units (MACs)
 Barrel Shifter
 Set of video ALUs.

 Data Register File:
 Eight registers, each 32 bits wide.
 Sixteen registers, each 16-bit wide.

 Memory:
 Read two 32-bit words in each cycle (LD0-1).
 Write one 32-bit words in each cycle (SD).

 Status
UTN-FRBA 2010 Eng. Julian S. Bruno

DAU - Registers

 Register Files:
 Data Register File
 R0-7 (32 bits).
 Rx.H and Rx.L (16 bits).

 Accumulator Register:
 A0 and A1(40 bits)
 Ax.W (32 bits).
 Ax.H and Ax.L (16 bits).
 Ax.X (8 bits).

 Both internal and external memory are accessed
in little endian byte order.

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU - Data Formats
Format Representation in Memory Representation in 32-bit Register

32.0 Unsigned Word DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD

32.0 Signed Word SDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD SDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD

16.0 Unsigned Half Word DDDD DDDD DDDD DDDD 0000 0000 0000 0000 DDDD DDDD DDDD DDDD

16.0 Signed Half Word SDDD DDDD DDDD DDDD SSSS SSSS SSSS SSSS SDDD DDDD DDDD DDDD

8.0 Unsigned Byte DDDD DDDD 0000 0000 0000 0000 0000 0000 DDDD DDDD

8.0 Signed Byte SDDD DDDD SSSS SSSS SSSS SSSS SSSS SSSS SDDD DDDD

1.15 Signed Fraction S.DDD DDDD DDDD DDDD SSSS SSSS SSSS SSSS S.DDD DDDD DDDD DDDD

1.31 Signed Fraction S.DDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD S.DDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD

Packed 8.0 Unsigned Byte DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD

Packed 1.15 Signed
Fraction

S.DDD DDDD DDDD DDDD S.DDD DDDD DDDD DDDD S.DDD DDDD DDDD DDDD S.DDD DDDD DDDD DDDD

• s = sign bit(s) • d = data bit(s)
• “.” = decimal point by convention • Italics denotes data from a source other than adjacent bits.

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

 Six computational units:
 Two arithmetic/logic units (ALUs)
 Two multiplier/accumulator units (MACs)
 Barrel Shifter
 Set of video ALUs.

 Data Register File:
 Eight registers, each 32 bits wide.
 Sixteen registers, each 16-bit wide.

 Memory:
 Read two 32-bit words in each cycle (LD0-1).
 Write one 32-bit words in each cycle (SD).

 Status
UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Status Register (ASTAT)

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Significant
Bit (MSB) changes in a manner not predicted by the signs of the
operands and the nature of the operation.

UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Status Register (ASTAT)

The logic of the carry bits (AC0, AC1) is based on unsigned
magnitude arithmetic. The bit is set if a carry is generated
from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower
word portions of a multiword operation.

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

 Six computational units:
 Two arithmetic/logic units (ALUs)
 Two multiplier/accumulator units (MACs)
 Barrel Shifter
 Set of video ALUs.

 Data Register File:
 Eight registers, each 32 bits wide.
 Sixteen registers, each 16-bit wide.

 Memory:
 Read two 32-bit words in each cycle (LD0-1).
 Write one 32-bit words in each cycle (SD).

 Status
UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Logic Unit (ALU)

 ALUs perform arithmetic and logical operations on fixed-
point data.

 In/out operands : 16-, 32-, and 40-bit fixed-point
 Primary ALU operations occur on ALU0, while parallel

operations occur on ALU1, which performs a subset of
ALU0 operations.

 ALU instructions include:
 Fixed-point addition and subtraction of registers
 Addition and subtraction of immediate values
 Accumulation and subtraction of multiplier results
 Logical AND, OR, NOT, XOR, bitwise XOR, Negate
 Functions: ABS, MAX, MIN, Round, division primitives

UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Operations
 “ABS”
 “Add”
 “Add/Subtract – Prescale Down”
 “Add/Subtract – Prescale Up”
 “Add Immediate” - register += constant

 “DIVS, DIVQ (Divide Primitive)”
 “EXPADJ” - dest_reg = EXPADJ (sample_register, exponent_register)

 “MAX” - dest_reg = MAX (src_reg_0, src_reg_1)

 “MIN” - dest_reg = MIN (src_reg_0, src_reg_1)

 “Modify – Decrement” - dest_reg -= src_reg

 “Modify – Increment” - dest_reg += src_reg

 “Negate (Two’s-Complement)”
 “RND (Round to Half-Word)”
 “Saturate”
 “SIGNBITS” - dest_reg = SIGNBITS sample_register

 “Subtract”
 “Subtract Immediate” - register -= constantUTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Operations

 Single 16-Bit Operations
R3.H = R1.H + R2.L (NS) ; //ALU0

 Dual 16-Bit Operations
R3 = R1 +|– R2 (S) ; //ALU0

// R3.H = R1.H + R2.H y R3.L = R1.L - R2.L

 Quad 16-Bit Operations
R3 = R0 +|+ R1, R2 = R0 –|– R1 (S) ; //ALU0 and ALU1

// The same two pairs of 16-bit inputs are presented to ALU1 as to ALU0.

 Single 32-Bit Operations
R3 = R1 + R2 (S) ; //ALU0

 Dual 32-Bit Operations
R3 = R1 + R2, R4 = R1 – R2 (NS) ; //ALU0 and ALU1

R3 = A0 + A1, R4 = A0 – A1 (S) ; //ALU0 and ALU1
// The same two pairs of 16-bit inputs are presented to ALU1 as to ALU0

UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Mode and Options for
ALU

Mode Option Example and explanation

Dual and quad 16-

bit operation:

(opt_mode_0)

S Saturate the result at 16-bit

R3 = R1+|-R2 (s);

CO Cross option which swaps the order of the results in the destination registers for use in

complex math

R3 = R1+|-R2 (co);

SCO Combination of S and CO options

Dual 32-bit and

40-bit operation:

(opt_mode_1)

S Saturate result at 32-bit

R3 = R1 + R2, R4 = R1-R2 (s);

Quad 16-bit

operation:

(opt_mode_2)

ASR Arithmetic shift right which halves the result before storing to the destination register

R3 = R1 +|-R2, R4 = R1-|+R2 (s,asr);

Scaling is performed for the results before saturation

ASL Arithmetic shift left which doubles the result before storing to the destination register

UTN-FRBA 2010 Eng. Julian S. Bruno

Truncation and Rounding

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 Original 16-bit number
(0.51953125)

0 1 0 0 0 0 1 0 Truncated to 8-bit number
(0.515625). Error = 2-8

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Original 16-bit number
(0.51953125)

Add 1 at bit position 7 and carry

Biased rounding to 8-bit number
(0.5234375). Error = -2-8

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Original 16-bit number
(0.51953125)

Add 1 at bit position 7 and carry

Since the original number lies at the
halfway point between 2 numbers,
we can force bit 8 to 0.
Unbiased rounding to 8-bit number
(0.515625). Error = 2-8

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

(T) and (TFU)

(RND)
- Bias (round-to-nearest)
rounding

RND_MOD = 1
MATLAB: ceil()

-Unbiased (or convergent)
rounding

RND_MOD = 0
MATLAB: round()

The RND_MOD bit of the ASTAT
specifies the rounding mode.

UTN-FRBA 2010 Eng. Julian S. Bruno

Logical Operations

 “& (AND)”
 “~ (NOT One’s-Complement)”
 “| (OR)”
 “^ (Exclusive-OR)”
 “BXORSHIFT, BXOR”

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

 Six computational units:
 Two arithmetic/logic units (ALUs)
 Two multiplier/accumulator units (MACs)
 Barrel Shifter
 Set of video ALUs.

 Data Register File:
 Eight registers, each 32 bits wide.
 Sixteen registers, each 16-bit wide.

 Memory:
 Read two 32-bit words in each cycle (LD0-1).
 Write one 32-bit words in each cycle (SD).

 Status
UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier/Accumulator (MAC)

 MAC0 and MAC1
 Fixed-point multiplication
 Multiply and accumulate operations are available

 Multiplier fixed-point
 Input:16-bit fixed-point data
 Output: 32-bit results that may be added or

subtracted from a 40-bit accumulator.
 Rounding optional

 Inputs
 Fractional or Integer .
 Unsigned or two’s-complement.

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier/Accumulator (MAC)

 In MAC0, both inputs are treated as signed or
unsigned.

 In MAC1, there is a mixed-mode option.
 If both inputs are fractional and signed, the

multiplier automatically shifts the result left one
bit to remove the redundant sign bit.

 Unsigned fractional, integer, and mixed modes
do not perform a shift for sign bit correction.

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Modes Formats

 Multiplier Fractional Modes Formats

 Multiplier Arithmetic Integer Modes Formats

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Instruction
 Multiply 16-Bit Operands

R3.L=R3.H*R2.H ; /* MAC0. Both operands are signed fractions. */
R3.H=R6.H*R4.L (FU) ; /* MAC1. Both operands are unsigned fractions.*/
R6=R3.H*R4.H ; /* MAC0. Signed fraction operands, results saved as 32 bits. */

 Multiply 32-Bit Operands
R3 *= R0;

 Multiply and Multiply-Accumulate to Accumulator
A0=R3.H*R2.H ; /* MAC0, only. Both operands are signed fractions.*/
A1+=R6.H*R4.L (FU) ; /* MAC1, only. Both operands are unsigned fractions. */

 Multiply and Multiply-Accumulate to Half-Register
R3.L=(A0=R3.H*R2.H) ; /* MAC0, only. Both operands are signed fractions. */
R3.H=(A1+=R6.H*R4.L) (FU) ; /* MAC1, only. Both operands are unsigned fractions. */

 Multiply and Multiply-Accumulate to Data Register
R4=(A0=R3.H*R2.H) ; /* MAC0, only. Both operands are signed fractions. */
R3=(A1+=R6.H*R4.L) (FU) ; /* MAC1, only. Both operands are unsigned fractions.*/

 Dual MAC Operations
A1 += R1.H * R2.L, A0 += R1.L * R2.H;
R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L);

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Instruction Options

 (FU) Input data operands are unsigned fraction. No shift correction is made.
 (IS) Input data operands are signed integer. No shiftcorrection is made.
 (IU) Input data operands are unsigned integer. No shift correction is made.
 (T) Input data operands are signed fraction. When copying to the destination

half register, truncates the lower 16 bits of the Accumulator contents.
 (TFU) Input data operands are unsigned fraction. When copying to the

destination half register, truncates the lower 16 bits of the Accumulator
contents.

 (ISS2) the number is saturated to its maximum positive or negative value.
 (IH) This option indicates integer multiplication with high half word extraction.
 (W32) Input data operands are signed fraction with no extension bits in the

Accumulators at 32 bits.
 (M) Operation uses mixed-multiply mode. Valid only for MAC1 versions of

the instruction.
UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Data Flow Details

UTN-FRBA 2010 Eng. Julian S. Bruno

MAC0 combined with MAC1
 Both scalar instructions must share the same mode option (for

example, default, IS, IU, T).
 Both scalar instructions must share the same pair of source

registers, but can reference different halves of those registers.
 If both scalar operations write to destination D-registers, they must

write to the same sized destination D-registers, either 16 or 32
bits.

 The destination D-registers (if applicable) for both scalar
operations must form a vector couplet, as described below:
 16-bit: store the results in the upper- and lower-halves of the same 32-

bit Dreg. MAC0 writes to the lower half, and MAC1 writes to the upper
half.
 R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L);

 32-bit: store the results in valid Dreg pairs. MAC0 writes to the pair’s
lower (even-numbered) Dreg, and MAC1 writes to the upper (odd-
numbered) Dreg.
 R5 = (A1 += R1.H * R2.L) , R4 = (A0 += R1.L * R2.L) (IS);

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

 Six computational units:
 Two arithmetic/logic units (ALUs)
 Two multiplier/accumulator units (MACs)
 Barrel Shifter
 Set of video ALUs.

 Data Register File:
 Eight registers, each 32 bits wide.
 Sixteen registers, each 16-bit wide.

 Memory:
 Read two 32-bit words in each cycle (LD0-1).
 Write one 32-bit words in each cycle (SD).

 Status
UTN-FRBA 2010 Eng. Julian S. Bruno

Barrel Shifter

 Functions
 arithmetic shift
 logical shift
 rotate
 bit test
 set
 pack
 unpack
 exponent detection

 Inputs: 16-, 32-, or 40-bit
 Outputs: 16-, 32-, or 40-bit

UTN-FRBA 2010 Eng. Julian S. Bruno

Shift/Rotate Operations

 “Add with Shift” combines an addition operation with a one- or two-place logical
shift left

 “Shift with Add” combines a one- or two-place logical shift left with an addition
operation. Useful for array pointer manipulation

 “Arithmetic Shift” Ashift, >>>, >>>=, <<(s), opt_sat

 “Logical Shift” Lshift, >>, >>=, <<, =<<

 “ROT (Rotate)” rotates a register through the CC bit

 Two-Operand or Three-Operand Shifts
 Immediate or Register Shifts

UTN-FRBA 2010 Eng. Julian S. Bruno

Two-Operand Shifts

 Immediate Shifts
// R0 contains 0000 B6A3 ;
R0 >>= 0x04 ;
// R0 contains 0000 0B6A ;

 Register Shifts
// R0 contains 0000 B6A3 and R2 contains 0000 0004 ;
R0 <<= R2 ;
// R0 contains 000B 6A30 ;

UTN-FRBA 2010 Eng. Julian S. Bruno

Three-Operand Shifts

 Immediate Shifts
// R0.L contains B6A3 ;
R1.H = R0.L << 0x04 ;
// R1.H contains 6A30 ;

 Register Shifts
// R0 contains 0000 B6A3 and R2.L contains 0004
R1 = R0 ASHIFT by R2.L ;
// R1 contains 000B 6A30 ;

// R0 contains ABCD EF12 , R2.L contains 0004 and CC=0
R1 = R0 ROT by R2.L ;
// R1 contains BCDE F125 ;

UTN-FRBA 2010 Eng. Julian S. Bruno

Bit Operations

 “BITCLR”
 “BITSET”
 “BITTGL”
 “BITTST”
 “DEPOSIT” merges the background bit field with the foreground bit field.

 “EXTRACT” moves only specific bits from the scene_reg into the low-order bits of the dest_reg

 “BITMUX” merges bit streams

 “ONES (One’s-Population Count)”

UTN-FRBA 2010 Eng. Julian S. Bruno

Vector Operations
 “Add on Sign”
 “VIT_MAX (Compare-Select)”
 “Vector ABS”
 “Vector Add / Subtract”
 “Vector Arithmetic Shift”
 “Vector Logical Shift”
 “Vector MAX”
 “Vector MIN”
 “Vector Multiply”
 “Vector Multiply and Multiply-Accumulate”
 “Vector Negate (Two’s-Complement)”
 “Vector PACK”
 “Vector SEARCH”

UTN-FRBA 2010 Eng. Julian S. Bruno

Control Code Bit Management

 “Compare Data Register” or “Compare Pointer”
CC = operand_1 == operand_2
CC = operand_1 < operand_2
CC = operand_1 <= operand_2
CC = operand_1 < operand_2 (IU)
CC = operand_1 <= operand_2 (IU)

 “Compare Accumulator”
CC = A0 == A1
CC = A0 < A1
CC = A0 <= A1

 “Move CC”
 “Negate CC”

Also see: IF CC JUMP and IF !CC JUMP
UTN-FRBA 2010 Eng. Julian S. Bruno

Recommended bibliography

 Blackfin Processor Programming Reference,
Revision 1.3, September 2008
 Ch2: Computational Units
 Ch11: CONTROL CODE BIT MANAGEMENT
 Ch12: LOGICAL OPERATIONS
 Ch13: BIT OPERATIONS
 Ch14: SHIFT/ROTATE OPERATIONS
 Ch15: ARITHMETIC OPERATIONS

 NOTE: Many images used in this presentation were extracted from the recommended bibliography.

UTN-FRBA 2010 Eng. Julian S. Bruno

Thank you!

Questions?

UTN-FRBA 2010Eng. Julian S. Bruno

	Real Time�Digital �Signal �Processing��
	Architecture
	Introduction to MSA
	Blackfin Processor
	ADSP BF53X
	Core Architecture – BF53X
	Data Arithmetic Unit – BF53X
	DAU
	DAU - Registers
	DAU - Data Formats
	DAU
	Arithmetic Status Register (ASTAT)
	Arithmetic Status Register (ASTAT)
	DAU
	Arithmetic Logic Unit (ALU)
	Arithmetic Operations
	Arithmetic Operations
	Arithmetic Mode and Options for ALU
	Truncation and Rounding
	Logical Operations
	DAU
	Multiplier/Accumulator (MAC)
	Multiplier/Accumulator (MAC)
	Multiplier Modes Formats
	Multiplier Instruction
	Multiplier Instruction Options
	Multiplier Data Flow Details
	MAC0 combined with MAC1
	DAU
	Barrel Shifter
	Shift/Rotate Operations
	Two-Operand Shifts
	Three-Operand Shifts
	Bit Operations
	Vector Operations
	Control Code Bit Management
	Recommended bibliography
	Questions?

