Eng. Julian S. Bruno

REAL TIME
DIGITAL
SIGNAL

PROCESSING

UTN-FRBA
2010

- Architecture

Introduction to the Blackfin Processor

UTN-FRBA 2010 Eng. Julian S. Bruno

Introduction to MSA

Micro Signal Architecture (MSA) core was jointly
developed by Intel and Analog Devices Inc (ADI).

MSA incorporates both DSP and microcontroller
functionalities in a single core.

MSA Include optimizations for high-level language
programming, memory protection, and byte
addressing.

MSA has a very efficient and dynamic power
management feature.

Adjuts boyh the voltage delivered to the core and
the frequency at which core runs.

UTN-FRBA 2010 Eng. Julian S. Bruno

Blackfin Processor

The BF processor is based on the MSA core.

16-/32-bit embedded processor core with a 10-
stage RISC MCU/DSP pipeline

Dual MAC signal processing.
Flexible Single Instruction.
Multiple Data (SIMD) capabilities.

Multimedia processing features into a single
Instruction set architecture.

Instruction SRAM, Data SRAM, Data Cache,
Boot ROM, Processor-Specific MMRs

UTN-FRBA 2010 Eng. Julian S. Bruno

ADSP BF53X

VOLTAGE REGULATOR

JTAG TEST AND EMULATION

A

ﬂ PERIPHERAL ACCESS BUS

WATCHDOG TIMER

ﬂ ®
=
m
) f— RTC I —
INTERRUPT §
CONTROLLER =3
&1 pr— CAN S
o
w PORT
i p—- TWI —] Sq—
o
LIJ A
L1 L1 OMA o SPORTO —
INSTRUCTION DATA =
MEMORY MEMORY CONTROLLER
SPORT1 K—>| spio
W i W i I PORT [K—>
EXTERNAL 2 PPI G
ACCESS Ix9 2 =
BUS DMA COREBUS 3 @ o Y
n @ UART 0-1 —
2
L]
EXTERNAL PORT <) GPIO
FLASH, SDRAM CONTROL % L SPFI —> P::I::RT K—>
ﬂ — TIMERS 0-7 —>
16
—ﬂ;:; ETHERNET MAC GPIO
BOOTROM (ADSP-BF536/ K—>| PORT K—>
ADSP-BF537 ONLY) H
UTN-FRBA 2010 Eng3Juitan S. Bruno

Core Architecture — BF53X

- Data Arithmetic Unit
UTwo 16-bit MACs
QTwo 40-bit ALUs
L Two 40-bit accumulators (ACCO and ACC1)
QFour 8-bit video ALUs
QSingle 40-bit barrel shifter
UData register file
QData types include 8-, 16-, or 32-bit signed or unsigned integer
UData types include 16- or 32-bit signed fractional
L32-bit reads AND two 32-bit writes (SD, LDO, LD1)

- =l INTOLTU LTIUTUVTITIITAQU 1VUMITTY . L 1

Ad L Code density

A RR AR A RELE 4 A AL AR 4 4

Qindex, length, base, and modify registers
QCircular buffering

UPointer Register File, has pointers for addressing operations.
UDAG registers

L Stack pointer

UFrame pointer

UTN-FRBA 2010 DATA ARITRMETIC UNIT Eng. Julian S. Bruno

UTN-FRBA 2010

Six computational units:
U Two arithmetic/logic units (ALUS)
U Two multiplier/accumulator units (MACSs)
UBarrel Shifter
USet of video ALUs.

Data Register File:
UEight registers, each 32 bits wide.

USixteen registers, each 16-bit wide.
Memory:

URead two 32-bit words in each cycle (LDO-1).
LWrite one 32-bit words in each cycle (SD).

Status

CORE
PROCESSOR

DATA ARITHMETIC UNIT

Eng. Julian S. Bruno

DAU

Six computational units:
Two arithmetic/logic units (ALUS)
Two multiplier/accumulator units (MACS)
Barrel Shifter
Set of video ALUs.

Data Register File:
Eight registers, each 32 bits wide.
Sixteen registers, each 16-bit wide.

Memory:

Read two 32-bit words in each cycle (LDO-1).

Write one 32-bit words in each cycle (SD).
Status

UTN-FRBA 2010

Eng. Julian S. Bruno

DAU - Registers

Register Files:

Data Register File
RO-7 (32 bits).
Rx.H and Rx.L (16 bits).

Accumulator Register:

AO and A1(40 bits)
AX.W (32 hits). e RN § ¥ S
Ax.H and Ax.L (16 bits). ' ' ' -
AX.X (8 bits). o e B T e s B

Both internal and external memory are accessec
In little endian byte order. o SU—

RO B3 B2 B1 B0 B3 B2 B1 BO

| | |
addr+3 | addr+2 | addr+i]| addr

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU - Data Formats

Format

Representation in Memory

Representation in 32-bit Register

32.0 Unsigned Word

DDDD DDDD DDDD DDDD bDDD DDDD DDDD DDDD

DDDD DDDD DDDD DDDD bDDD DDDD DDDD DDDD

32.0 Signed Word

SDDD DDDD DDDD DDDD DDDD DDDD bDDD DDDD

SDDD DDDD DDDD DDDD DDDD DDDD bDDD DDDD

16.0 Unsigned Half Word

DDDD DDDD DDDD DDDD

0000 0000 0000 0000 DDDD DDDD DDDD DDDD

16.0 Signed Half Word

SDDD DDDD DDDD DDDD

SSSS SSSS SSSS SSSS SDDD bDDD DDDD DDDD

8.0 Unsigned Byte

DDDD DDDD

0000 0000 0000 0000 0000 0000 DDDD DDDD

8.0 Signed Byte

SDDD DDDD

SSSS SSSS SSSS SSSS SSSS SSSS SDDD DDDD

1.15 Signed Fraction

S.DDD bDDD DDDD DDDD

SSSS SSSS SSSS SSSS S.ODDD DDDD DDDD DDDD

1.31 Signed Fraction

S.DDD bDDD DDDD DDDD DDDD DDDD DDDD DDDD

S.DDD bDDD DDDD DDDD DDDD DDDD DDDD DDDD

Packed 8.0 Unsigned Byte

DDDD DDDD DDDD DDDD bDDD bDDD DDDD DDDD

DDDD DDDD DDDD DDDD bDDD DDDD DDDD DDDD

Packed 1.15 Signed
Fraction

S.DDD DDDD DDDD DDDD S.DDD DDDD DDDD DDDD

S.DDD DDDD DDDD DDDD S.DDD bDDD DDDD DDDD

* s = sign bit(s)

« “.” = decimal point by convention

UTN-FRBA 2010

* d = data bit(s)

* Italics denotes data from a source other than adjacent bits.

Eng. Julian S. Bruno

DAU

Six computational units:
Two arithmetic/logic units (ALUS)
Two multiplier/accumulator units (MACS)
Barrel Shifter
Set of video ALUs.

Data Register File:
Eight registers, each 32 bits wide.
Sixteen registers, each 16-bit wide.

Memory:

Read two 32-bit words in each cycle (LDO-1).

Write one 32-bit words in each cycle (SD).
Status

UTN-FRBA 2010

Eng. Julian S. Bruno

Arithmetic Status Register (ASTAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
I::} oo |o IO 0 Jo |o It} o |o]o Iu o |o Jo I Reset = 0x0000 0000
VS (Sticky Dreg Overflow) I— AV0 (A0 Overflow)
Sticky version of V 0 - Last result written to AQ

has not overtlowed
V (Dreg Overflow) 1 - Last result written to A0
0 - Last result written from has overflowed

AL'._J to Data Register File AV0S (Sticky A0 Overflow)
register has not overflowed

1 - Last result has overflowed Sticky version of AVO
AV1S (Sticky A1 Overflow) — AV1 (A1 Overflow)
Sticky version of AV1 0 - Last result written to A1

has not overflowed
1 - Last result written to A1
has overflowed

The logic of the overflow bits (V, VS, AVO, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the Most Significant
Bit (MSB) changes in a manner not predicted by the signs of the

operands and the nature of the operation.

UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Status Register (ASTAT)

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
IDUODIODDOIGGDUIGODD

AC1 (ALU1 Carry) 4' I—AZ (Zero Result)

0 - Operation in ALU1 does not 0 - Result from last ALUO,
generate a carry ALU1, or shifter operation

1 - Operation generates a carry is not zero

ACO (ALUO Carry) 1 - Result is zero

0 - Operation in ALUO does not AN (Negative Result)
generate a carry 0 - Result from last ALUO,

1 - Operation generates a ALU1, or shifter operation
carry is not negative

RND_MOD (Rounding Mode) 1 - Result is negative

0 - Unbiased rounding ————— ACO0_COPY

1 - Biased rounding Identical to bit 12

AQ (Quotient) V_COPY

Aaoann Identical to bit 24
- CC (Condition Code)

The logic of the carry bits (ACO, AC1) is based on unsigned

magnitude arithmetic. The bit is set if a carry is generated Multipurpose flag, used
from bit 16 (the MSB) primarily to hold resolution of
)) arithmetic comparisons. Also
The carry bits (ACO, AC1) are most useful for the lower used by some shifter instruc-
word portions of a multiword operation. tions to hold rotating bits.

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

Six computational units:
Two arithmetic/logic units (ALUS)
Two multiplier/accumulator units (MACS)
Barrel Shifter
Set of video ALUs.

Data Register File:
Eight registers, each 32 bits wide.
Sixteen registers, each 16-bit wide.

Memory:

Read two 32-bit words in each cycle (LDO-1).

Write one 32-bit words in each cycle (SD).
Status

UTN-FRBA 2010

Eng. Julian S. Bruno

Arithmetic Logic Unit (ALU)

ALUs perform arithmetic and logical operations on fixed-
point data.

In/out operands : 16-, 32-, and 40-bit fixed-point

Primary ALU operations occur on ALUO, while parallel
operations occur on ALU1, which performs a subset of
ALUO operations.

ALU instructions include:

Fixed-point addition and subtraction of registers
Addition and subtraction of immediate values
Accumulation and subtraction of multiplier results
Logical AND, OR, NOT, XOR, bitwise XOR, Negate
Functions: ABS, MAX, MIN, Round, division primitives

UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Operations

]
0 “ABS”
o “Add”
o “Add/Subtract — Prescale Down”
o “Add/Subtract — Prescale Up”
o “Add Immediate” - register += constant
o “DIVS, DIVQ (Divide Primitive)”
o “EXPADJ” - dest_reg = EXPADJ (sample_register, exponent_register)
o “MAX” - dest_reg=MAX (src_reg 0, src_reg 1)
o “MIN” - dest_reg=MIN (src_reg 0, src_reg_1)
o “Modify — Decrement” - dest reg -= src_reg
o “Modify — Increment” - dest_reg += src_reg
o “Negate (Two's-Complement)”
o “RND (Round to Half-Word)”
o “Saturate”
0 “SIGNBITS” - dest_reg = SIGNBITS sample_register
o “Subtract”

UTH_FF;&lﬂpltgaCt Immediate” - register -= constant Eng. Julian S. Bruno

Arithmetic Operations

o Single 16-Bit Operations
R3.H = R1.H + R2.L (NS) ; //ALUO

o Dual 16-Bit Operations
R3=R1 +|- R2(S) ; //ALUO
RBH=R1.H+R2HYyR3.L=R1.L-R2.L

o Quad 16-Bit Operations
R3=R0O +|+ R1, R2 = R0 —|- R1 (S) ; //ALUO and ALU1
I/l The same two pairs of 16-bit inputs are presented to ALU1 as to ALUO.

o Single 32-Bit Operations
R3=R1+ R2(S); //ALUO

o Dual 32-Bit Operations
R3=R1+R2,R4=R1-R2(NS); //ALUO and ALU1
R3=A0+A1,R4=A0-A1(S); //ALUO and ALU1
I/l The same two pairs of 16-bit inputs are presented to ALU1 as to ALUO
UTN-FRBA 2010 Eng. Julian S. Bruno

Arithmetic Mode and Options for
ALU

Mode Option

Dual and quad 16- B

bit operation:

Example and explanation
Saturate the result at 16-bit

R3 = R1+|-R2 (s);

(opt_mode_0) CcO

Cross option which swaps the order of the results in the destination registers for use in
complex math

R3 = R1+|-R2 (co);

SCO

Combination of S and CO options

Dual 32-bit and S

40-bit operation:

(opt_mode_1)

Saturate result at 32-bit

R3 =R1+ R2, R4 = R1-R2 (s);

Quad 16-bit ASR
operation:

(opt_mode_2)

Arithmetic shift right which halves the result before storing to the destination register
R3 =R1 +|-R2, R4 = R1-|+R2 (s,asr);

Scaling is performed for the results before saturation

ASL

Arithmetic shift left which doubles the result before storing to the destination register

UTN-FRBA 2010

Eng. Julian S. Bruno

Truncation and Rounding

0000010 1000

0000

0,L00 0010

Original 16-bit number
(0.51953125)

Truncated to 8-bit number
(0.515625). Error = 2

0000010 1000

0000

1000

0000

0,100 0011

) Original 16-bit number

(0.51953125)
» Add 1 at bit position 7 and carry

Biased rounding to 8-bit number

(0.5234375). Error = -2®
J

0000010 1000

0000

1000

0000

0,100 0011

A 4

0000010

_—

Original 16-bit number
(0.51953125)

Add 1 at bit position 7 and carry

> Since the original number lies at the
halfway point between 2 numbers,
we can force bit 8 to 0.

Unbiased rounding to 8-bit number

(0.515625). Error = 27

UTN-FRBA 2010

(T) and (TFU)

(RND)
- Bias (round-to-nearest)
rounding
RND_MOD =1
MATLAB: ceil()
-Unbiased (or convergent)
rounding
RND_MOD =0
MATLAB: round()

The RND_MOD bit of the ASTAT
specifies the rounding mode.

Eng. Julian S. Bruno

Logical Operations
_
0 “& (AND)”
0 “~ (NOT One’s-Complement)”
0 [(OR)”
0 N (Exclusive-OR)”
0 “BXORSHIFT, BXOR”

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

Six computational units:
Two arithmetic/logic units (ALUS)
Two multiplier/accumulator units (MACS)
Barrel Shifter
Set of video ALUs.

Data Register File:
Eight registers, each 32 bits wide.
Sixteen registers, each 16-bit wide.

Memory:

Read two 32-bit words in each cycle (LDO-1).

Write one 32-bit words in each cycle (SD).
Status

UTN-FRBA 2010

Eng. Julian S. Bruno

Multiplier/Accumulator (MAC)

MACO and MAC1

Fixed-point multiplication

Multiply and accumulate operations are available
Multiplier fixed-point

Input:16-bit fixed-point data

Output: 32-bit results that may be added or
subtracted from a 40-bit accumulator.

Rounding optional

Inputs
Fractional or Integer .
Unsigned or two’s-complement.

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier/Accumulator (MAC)

In MACO, both inputs are treated as signed or
unsigned.

In MAC1, there Is a mixed-mode option.

If both inputs are fractional and signhed, the
multiplier automatically shifts the result left one
bit to remove the redundant sign bit.

Unsigned fractional, integer, and mixed modes
do not perform a shift for sign bit correction.

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Modes Formats

Multiplier Fractional Modes Formats

Operation

Operand Formats

Result Formats

Multiplication

1.15 explicitly signed or

unsigned

2.30 shifted to 1.31

Multiplication/Addition

1.15 explicitly signed or

unsign ed

2.30 shifted to 1.31

Multiplication/Subtraction

1.15 explicitly signed or

unsigned

2.30 shifted to 1.31

Multiplier Arithmetic Integer Modes Formats

UTN-FRBA 20

Operation

Operand Formats

Result Formats

Multiplication

16.0 explicitly signed or

unsigned

32.0 not shifted

Multiplication/Addition

16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication/Subtraction

16.0 explicitly signed or
unsigned

32.0 not shifted

10

Eng. Julian S. Bruno

Multiplier Instruction

o Multiply 16-Bit Operands
R3.L=R3.H*R2.H ; /* MACO. Both operands are signed fractions. */
R3.H=R6.H*R4.L (FU) ; /* MACL1. Both operands are unsigned fractions.*/
R6=R3.H*R4.H ; /* MACO. Signed fraction operands, results saved as 32 bits. */
o Multiply 32-Bit Operands
R3 *= RO;
o Multiply and Multiply-Accumulate to Accumulator
AO=R3.H*R2.H ; /* MACO, only. Both operands are signed fractions.*/
Al+=R6.H*R4.L (FV) ; /* MAC1, only. Both operands are unsigned fractions. */
o Multiply and Multiply-Accumulate to Half-Register
R3.L=(A0=R3.H*R2.H) ; /* MACO, only. Both operands are signed fractions. */
R3.H=(A1+=R6.H*R4.L) (FU) ; [* MAC1, only. Both operands are unsigned fractions. */
o Multiply and Multiply-Accumulate to Data Register
R4=(A0=R3.H*R2.H) ; /* MACO, only. Both operands are signed fractions. */
R3=(A1+=R6.H*R4.L) (FU) ; /* MAC1, only. Both operands are unsigned fractions.*/

o Dual MAC Operations
Al += R1.H * R2.L, AO += R1.L * R2.H;
R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L);

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Instruction Options

(FU) Input data operands are . No shift correction is made.
(IS) Input data operands are . No shiftcorrection is made.
(IU) Input data operands are . No shift correction is made.
(T) Input data operands are . When copying to the destination
half register, the lower 16 bits of the Accumulator contents.

(TFU) Input data operands are . When copying to the
destination half register, the lower 16 bits of the Accumulator
contents.

(ISS2) the number is to its maximum positive or negative value.

(IH) This option indicates integer multiplication with high half word extraction.

(W32) Input data operands are signed fraction with no extension bits in the
Accumulators at 32 bits.

(M) Operation uses mixed-multiply mode. Valid only for MAC1 versions of

the instruction.
UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplier Data Flow Detalls

TO MEMORY
'y ALUs
‘ »
4 1 $32h A Y i32b * iﬂ?b
Y h 4
OPERAND OPERAND
ﬁ RO.H RO.L \ SELECTION SELECTION
R1| miH R1.L
MAC1 MACO
R2 | mzmH R2.L
R3 R3.H R3.L
R4 R4.H R4.L Al A0
R5| RmsH R5.L SHIFTER
R& | R&H RE.L
w R7.H RT.L
Fwy ry
A § 1.32b
A § Y.32bh 4
v

FROM MEMORY

UTN-FRBA 2010

Eng. Julian S. Bruno

MACO combined with MAC1

Both scalar instructions must share the (for
example, default, IS, IU, T).

Both scalar instructions must share the
, but can reference different halves of those registers.

If both scalar operations write to destination D-registers, they must

write to the D-registers, either 16 or 32
bits.
The (if applicable)

must form a vector couplet, as described below:

6-bit: store the results in the upper- and lower-halves of the same 32-
bit Dreg. writes to the , and writes to the

R3.H= (A1 +=R1.H*R2.L), R3.L = (A0 += R1.L * R2.L);

. store the results in valid Dreg pairs. v writes to the pair’s
lower () , and writes to the upper (

R5=(A1+=R1.H*R2.L), R4=(A0 +=R1.L*R2.L) (IS);

UTN-FRBA 2010 Eng. Julian S. Bruno

DAU

Six computational units:
Two arithmetic/logic units (ALUS)
Two multiplier/accumulator units (MACS)
Barrel Shifter
Set of video ALUs.

Data Register File:
Eight registers, each 32 bits wide.
Sixteen registers, each 16-bit wide.

Memory:

Read two 32-bit words in each cycle (LDO-1).

Write one 32-bit words in each cycle (SD).
Status

UTN-FRBA 2010

Eng. Julian S. Bruno

Barrel Shifter

Functions
arithmetic shift
logical shift
rotate
bit test
set
pack
unpack
exponent detection

Inputs: 16-, 32-, or 40-bit
Outputs: 16-, 32-, or 40-Dbit

UTN-FRBA 2010 Eng. Julian S. Bruno

Shift/Rotate Operations

“Add W|th Sh ift” combines an addition operation with a one- or two-place logical
shift left

“Sh|ft Wlth Add” combines a one- or two-place logical shift left with an addition
operation. Useful for array pointer manipulation

“Arithmetic Shift” Ashift, >>>, >>>=, <<(s), opt_sat
“Logical Shift” Lshif, >, >>=, <<, =<<
‘ROT (ROtatE)” rotates a register through the CC bit

Two-Operand or Three-Operand Shifts
Immediate or Register Shifts

UTN-FRBA 2010 Eng. Julian S. Bruno

Two-Operand Shifts

o Immediate Shifts

/I RO contains 0000 B6A3 :
RO >>= 0x04 :
/I RO contains 0000 OB6A ;

o Register Shifts

/I RO contains 0000 B6A3 and R2 contains 0000 0004 ;
RO <<=R2:
/I RO contains 000B 6A30 ;

UTN-FRBA 2010 Eng. Julian S. Bruno

Three-Operand Shifts

o Immediate Shifts
/l RO.L contains B6A3 ;
R1.H = RO.L << 0x04 ;
/I R1.H contains 6A30 ;

o Register Shifts

/l RO contains 0000 B6A3 and R2.L contains 0004
R1 =ROASHIFT by R2.L ;
/I R1 contains 000B 6A30 ;

/I RO contains ABCD EF12 , R2.L contains 0004 and CC=0

R1=ROROT by R2.L;
/I R1 contains BCDE F125:

UTN-FRBA 2010 Eng. Julian S. Bruno

Bit Operations

‘B
"B
‘B
‘B

'CLR”
SET”
TGL”

TST”

“DEPOS”-” merges the background bit field with the foreground bit field.

(14 1
EXT RACT moves only specific bits from the scene_reg into the low-order bits of the dest_reg

“BlTM UX” merges bit streams
*ONES (One’s-Population Count)”

UTN-FRBA 2010

Eng. Julian S. Bruno

Vector Operations

“Add on Sign”

“VIT_MAX (Compare-Select)”
“Vector ABS”

“Vector Add / Subtract”

“Vector Arithmetic Shift”

“Vector Logical Shift”

“Vector MAX”

“Vector MIN”

“Vector Multiply”

“Vector Multiply and Multiply-Accumulate”
“Vector Negate (Two’s-Complement)”
“Vector PACK”

“Vector SEARCH”

UTN-FRBA 2010 Eng. Julian S. Bruno

Control Code Bit Management

o “Compare Data Register” or “Compare Pointer”
CC = operand_1 == operand_2
CC = operand_1 < operand_2
CC = operand_1 <= operand_2
CC = operand_1 < operand_2 (IU)
CC = operand_1 <= operand_2 (IU)

o “Compare Accumulator”
CC=A0==A1
CC=A0<Al
CC=A0<=Al

o “Move CC”

7 “Negate CC”
Also see: IF CC JUMP and IF ICC JUMP

UTN-FRBA 2010 Eng. Julian S. Bruno

Recommended bibliography

Blackfin Processor Programming Reference,
Revision 1.3, September 2008

Ch2: Computational Units

n11: CONTROL CODE BIT MANAGEMENT
N12: LOGICAL OPERATIONS

n13: BIT OPERATIONS

n14: SHIFT/ROTATE OPERATIONS

N15: ARITHMETIC OPERATIONS

OO0 000

NOTE: Many images used in this presentation were extracted from the recommended bibliography.

UTN-FRBA 2010 Eng. Julian S. Bruno

Thank you!

Eng. Julian S. Bruno UTN-FRBA 2010

	Real Time�Digital �Signal �Processing��
	Architecture
	Introduction to MSA
	Blackfin Processor
	ADSP BF53X
	Core Architecture – BF53X
	Data Arithmetic Unit – BF53X
	DAU
	DAU - Registers
	DAU - Data Formats
	DAU
	Arithmetic Status Register (ASTAT)
	Arithmetic Status Register (ASTAT)
	DAU
	Arithmetic Logic Unit (ALU)
	Arithmetic Operations
	Arithmetic Operations
	Arithmetic Mode and Options for ALU
	Truncation and Rounding
	Logical Operations
	DAU
	Multiplier/Accumulator (MAC)
	Multiplier/Accumulator (MAC)
	Multiplier Modes Formats
	Multiplier Instruction
	Multiplier Instruction Options
	Multiplier Data Flow Details
	MAC0 combined with MAC1
	DAU
	Barrel Shifter
	Shift/Rotate Operations
	Two-Operand Shifts
	Three-Operand Shifts
	Bit Operations
	Vector Operations
	Control Code Bit Management
	Recommended bibliography
	Questions?

