
Eng. Julian BrunoUTN-FRBA
2010

Eng. Julian S. Bruno

REAL TIME
DIGITAL
SIGNAL

PROCESSING

Number representation and
word-length effects.

DSP fundamentals

UTN-FRBA 2010 Eng. Julian S. Bruno

Number Representation

 8-bit Binary Data
Format (Integer)

 8-bit Binary Data
Format (Fractional)

= 27+25+24+20
= 177

1 0 1 1 0 0 0 1

+27 26 25 24 23 22 21 20

 (a) Unsigned integer

1 0 1 1 0 0 0 1

-27 26 25 24 23 22 21 20

 (b) Signed integer (2’s complement)

= −27+25+24+20
= −79

Radix point for integer

= 23+21+20+2-4
= 11.0625

1 0 1 1 0 0 0 1

+23 22 21 20 2-1 2-2 2-3 2-4

1 0 1 1 0 0 0 1

-23 22 21 20 2-1 2-2 2-3 2-4

 (b) Signed fractional (4.4) format

= -23+21+20+2-4
= -4.9375

Radix point for fractional
number

(a) Unsigned fractional (4.4) format

UTN-FRBA 2010 Eng. Julian S. Bruno

Integer Fixed-Point Representation

 N-bit fixed point, 2’s complement integer
representation

X = -bN-1 2N-1 + bN-2 2N-2 + … + b020

 Difficult to use due to possible overflow
 In a 16-bit processor, the dynamic range is
-32,768 to 32,767.

 Example:
200 × 350 = 70000, which is an overflow!

UTN-FRBA 2010 Eng. Julian S. Bruno

Fractional Fixed-Point Representation

 Also called Q-format
 Fractional representation suitable for DSPs

algorithms.
 Fractional number range is between 1 and -1
 Multiplying a fraction by a fraction always results in

a fraction and will not produce an overflow (e.g.,
0.99 x 0.9999 less than 1)

 Successive additions may cause overflow
 Represent numbers between

 -1.0 and 1 − 2−(N-1), when N is number of bits

∑
−

=

−+−=
1

0
10 2.

N

m

Nm
mN bbx Decimal equivalency for

QN formats

UTN-FRBA 2010 Eng. Julian S. Bruno

General Fixed-Point Representation

 Qm.n notation
 m bits for integer portion
 n bits for fractional portion
 Total number of bits N = m + n + 1, for signed numbers
 Example: 16-bit number (N=16) and Q2.13 format
 2 bits for integer portion
 13 bits for fractional portion
 1 signed bit (MSB)

 Special cases:
 16-bit integer number (N=16) => Q15.0 format
 16-bit fractional number (N = 16) => Q0.15 format; also known

as Q.15 or Q15

nl
N

l
l

m
N bbx −

−

=
− ∑+−= 22

2

0
110

Decimal equivalency for
QM.N formats

UTN-FRBA 2010 Eng. Julian S. Bruno

Dynamic Ranges and Precision
Format (N.M)

Largest positive value
(0x7FFF)

Least negative
value (0x8000)

Precision (0x0001) DR(dB)

1 15 0,999969482421875 -1 3,05176E-05 2^-15 90,30873362

2 14 1,99993896484375 -2 6,10352E-05 2^-14 90,30873362

3 13 3,9998779296875 -4 0,00012207 2^-13 90,30873362

4 12 7,999755859375 -8 0,000244141 2^-12 90,30873362

5 11 15,99951171875 -16 0,000488281 2^-11 90,30873362

6 10 31,99902344 -32 0,000976563 2^-10 90,30873362

7 9 63,99804688 -64 0,001953125 2^-9 90,30873362

8 8 127,9960938 -128 0,00390625 2^-8 90,30873362

9 7 255,9921875 -256 0,0078125 2^-7 90,30873362

10 6 511,984375 -512 0,015625 2^-6 90,30873362

11 5 1023,96875 -1024 0,03125 2^-5 90,30873362

12 4 2047,9375 -2048 0,0625 2^-4 90,30873362

13 3 4095,875 -4096 0,125 2^-3 90,30873362

14 2 8191,75 -8192 0,25 2^-2 90,30873362

15 1 16383,5 -16384 0,5 2^-1 90,30873362

16 0 32767 -32768 1 2^-0 90,30873362

UTN-FRBA 2010 Eng. Julian S. Bruno

Scale Factors and Dynamic Range

Format Scaling factor () Range in Hex (fractional value)

(1.15) 215 = 32768 0x7FFF (0.99) → 0x8000 (–1)

(2.14) 214 = 16384 0x7FFF (1.99) → 0x8000 (–2)

(3.13) 213 = 8192 0x7FFF (3.99) → 0x8000 (–4)

(4.12) 212 = 4096 0x7FFF (7.99) → 0x8000 (–8)

(5.11) 211 = 2048 0x7FFF (15.99) → 0x8000 (–16)

(6.10) 210 = 1024 0x7FFF (31.99) → 0x8000 (–32)

(7.9) 29 = 512 0x7FFF (63.99) → 0x8000 (–64)

(8.8) 28 = 256 0x7FFF (127.99) → 0x8000 (–128)

(9.7) 27 = 128 0x7FFF (511.99) → 0x8000 (–512)

(10.6) 26 = 64 0x7FFF (1023.99) → 0x8000 (–1024)

(11.5) 25 = 32 0x7FFF (2047.99) → 0x8000 (–2048)

(12.4) 24 = 16 0x7FFF (4095.99) → 0x8000 (–4096)

(13.3) 23 = 8 0x7FFF (4095.99) → 0x8000 (–4096)

(14.2) 22 = 4 0x7FFF (8191.99) → 0x8000 (–8192)

(15.1) 21 = 2 0x7FFF (16383.99) → 0x8000 (–16384)

(16.0) 20 = 1(Integer) 0x7FFF (32767) → 0x8000h (–32768)

UTN-FRBA 2010 Eng. Julian S. Bruno

Examples

Hex. Number (16.0) format (4.12) format (1.15) format

0x7FFF

0x8000

0x1234

0xABCD

0x5566

Number (1.15) format (2.14) format (8.8) format (16.0) format

0.5

1.55

–1

–2.0345

UTN-FRBA 2010 Eng. Julian S. Bruno

How to convert fractional number
into integer

 Conversion from fractional to integer value:
 Step 1: normalize the decimal fractional number to the

range determined by the desired Q format
 Step 2: Multiply the normalized fractional number by 2n

 Step 3: Round the product to the nearest integer
 Step 4: Write the decimal integer value in binary using N

bits.
 Example:

 Convert the value 3,5 into an integer value that can be
recognized by a DSP assembler using the Q15 format:
 1) Normalize: 3,5/4 = 0,875;
 2) Scale: 0.875*2^15= 28.672;
 3) Round: 28.672

UTN-FRBA 2010 Eng. Julian S. Bruno

How to convert integer into
fractional number

 Numbers and arithmetic results are stored in the
DSP processor in integer form.

 Need to interpret as a fractional value depending
on Q format

 Conversion of integer into a fractional number for
Qm.n format:
 Divide integer by scaling factor of Qm.n => divide by

2n

 Example:
 Which Q15 value does the integer number 2

represent? 2/215=2*2-15=2-14

UTN-FRBA 2010 Eng. Julian S. Bruno

Two’s complement system

B=2

011 3

010 2

001 1

000 0

111 -1

110 -2

101 -3

100 -4

Sign bit 011= 3
101=-3

Range -2b to (2b-1)
For b+1 data bits

Negation mechanism

Step Result

Original number 011=3

1 complement 100

Add 1 101

101=-3

DRdB= 6.02dB . (N-1)

 One bit for sign, B for number representation.
 Very popular system, widely used.
 Same logic for sum and subtraction.

()

dBbDR
b(DR

)(DR

dB

b
dB

b
dB

b

⋅=
⋅⋅=⋅=

−⋅=⋅= −

02.6
)2(log20)2log20

12log20log20

1010

101
12

10

()valuewordpossiblesmallest
valuewordpossiblelargest

10log20

dBin Range Dynamic :

⋅=dB

dB

DR

DR

UTN-FRBA 2010 Eng. Julian S. Bruno

Geometric Depiction of Twos
Complement Integers

UTN-FRBA 2010 Eng. Julian S. Bruno

Sum in Two’s complement

1 0 1 1 -510

+
0 1 1 0 610

0 0 0 1 110

1 0 1 1 -510

+
1 0 0 0 -810

1 0 0 1 1 -1310

Overflow !

1. 0 1 1 -0.62510

+
0. 1 1 0 0.7510

0. 0 0 1 0.12510

1. 0 1 1 -0.62510

+
1. 0 0 0 -110

1 0. 0 1 1 -1.62510

Overflow !

Q3 Format

Integer Format

UTN-FRBA 2010 Eng. Julian S. Bruno

Sum in Two’s complement

3.0 1 0 1 1 . 0 -510

+
1.1 0 0 0 1 . 1 1.510

3.1 1 1 0 0 . 1 -3.510

Different Formats
1.2 1 1 . 0 1 0 -0.7510

+
0.3 0 0 . 0 1 1 0.37510

1.3 1 1 . 1 0 1 -0.37510

For C=A+B, where
A is in P.Q format
B is in R.S format

The result C is in max(P,R).max(Q,S) format
UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplication in Two’s complement

4.0 1 0 1 1. -510

x
4.0 0 1 1 0. 610

Integer Format

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1 1 0 0 0 1 0. -3010

For C=AxB, where
A and B are B bits wide, C is 2B bits wide.

Sign
extension

1.3 1. 0 1 1 -0.62510

x
1.3 0. 1 1 0 0.7510

Fractional Format Q3

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1. 1 0 0 0 1 0 -0.468810

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplication in Two’s complement

Different formats
3.1 1 0 1. 1 -2.510

x
2.2 0 1. 1 0 1.510

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1 1 0 0. 0 1 0 -3.7510

Sign
extension

1.3 1. 0 1 1 -0.62510

x
2.2 0 1. 1 0 1.510

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1 1. 0 0 0 1 0 -0.937510

For C=AxB, where
A is in P.Q format and B is in R.S format

The result’s is in (P+R).(Q+S)
UTN-FRBA 2010 Eng. Julian S. Bruno

Multiplication: Why MSB is
Redundant?

 Number represented by 4 bits (N = 4)
 2’s complement range is from -8 to +7.
 The min/max number obtained from

multiplication is -56/+64 ⇒ 7 bits are enough to
represent the result.

 NxN => 2N-1 bits
 The additional MSB is a “sign extension bit”

and can be removed
 Another way to interpret it is that if converted to

unsigned the multiplication result will be (N-1) +
(N-1) + 1 sign bits giving 2N – 1.

UTN-FRBA 2010 Eng. Julian S. Bruno

Q format Multiplication

UTN-FRBA 2010 Eng. Julian S. Bruno

Q15 Q15

X

16-bit memory

15 bits15 bits

Sign bit

Extension sign bit

 Product of two Q15 numbers is Q30.
 So we must remember that the 32-bit product has two bits in front of the binary

point.
 Since NxN multiplication yields 2N-1 result
 Addition MSB sign extension bit
 Typically, only the most significant 15 bits (plus the sign bit) are stored back into

memory, so the write operation requires a left shift by one.

Dynamic Range, Precision and
Quantization errors

x(n)

b0

ecoeff

ecoeff ecoeff ecoeff

esat

y(t)

DAC

y(n)

eout(n)

b1 b2

memory

eround / etrunc

esat esat

Possible quantization errors

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

UTN-FRBA 2010 Eng. Julian S. Bruno

ADC errors and solutions

x(n)

b0

ecoeff

ecoeff ecoeff ecoeff

esat

y(t)

DAC

y(n)

eout(n)

b1 b2

memory

eround / etrunc

esat esat

Possible quantization errors

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

UTN-FRBA 2010 Eng. Julian S. Bruno

Analog Signal and Quantization

 The codec and system’s
coefficients are the main
generators of quantization
noise.

 Codec’s noise can be thought
as a uniformly distributed PDF
between –LSB/2 and LSB/2.

 The SNR of an ADC is
proportional to the word-length
and the loading factor.

 Oversampling and Dithering

0em =

2 2 /12eσ = ∆

Mean and
Variance of
Quantization
Error

Quantization Step
B

Vp
2

2
=∆

UTN-FRBA 2010 Eng. Julian S. Bruno

)(log2002.677.4;:FactorLoading 10/
222 LFbdBdBSNRVpLF

VpVp
rmsLF DAsignal

signal ⋅+⋅+=⇒=== σ
σ

Analog Signal and Quantization

-20 -18 -16 -14 -12 -10 -8 -6 -4
10

20

30

40

50

60

70

80

90

100

Loading factor (dB)

S
N

R
A

/D

6-bit
8-bit
10-bit
12-bit
14-bit
16-bit

()

()
bdBdBSNR

Vp
VpSNR

Vprms

VpwhereVp

SNR

SNR

DA

b
bDA

signal

bbnoiseDA

noiseDA

signal
DA

DA

⋅+=

⋅⋅=

⋅

⋅=

==

=∆
⋅

=
∆

=

⋅=

⋅=

02.676.1

25.1log10
23/
2/log10

2

2
2

2312

log10

log10

/

2
1022

2

10/

2
22

2

22

/
2

/
2

2

10/

 variancenoiseon quantizati A/D
 variancesignalinput

10/

σ

σ

σ
σ

dBSNRbitsb DA 08.9816 / =⇒=

UTN-FRBA 2010 Eng. Julian S. Bruno

Oversampling Method

UTN-FRBA 2010 Eng. Julian S. Bruno

+⋅+=

=

BW
fsbdBdBSNR

BW
fs PG DA 2

log1002.676.1;
2

log10 :Gain Prosessing /

Oversampling and Decimating Method

The number of bits used for the lowpass filter's
coefficients and registers must exceed the original
number of ADC bits in order to benefit from the
oversampling scheme

Oversampling Method

Normal Averaging Rolling Average

UTN-FRBA 2010 Eng. Julian S. Bruno

It’s ideally suited for applications
requiring oversampling and higher
sample rates

It’s ideally used in cases where the
sampling frequency is low compared to
the sampling rate of the ADC

Dithering Method

UTN-FRBA 2010 Eng. Julian S. Bruno

Dithering forces the quantization
noise to lose its coherence with
the original input signal.

•Low-amplitude analog signals.
•Highly periodic analog signals.
•Slowly varying (DC to very low
frequency) analog signals.

Analog Signal and Quantization

 SNRA/D >= SNRsignal
 In practice, SNRA/D =SNRA/D ideal -3 to 6 dB

 Aperture jitter error
 Missing output bit patterns
 Other nonlinearities

 It’s imprudent to force an A/D convert’s input to full
scale. Use LF to determine A/D’s SNR.

 Effective Numbers Of Bits (ENOB)

 SNRDSP >= SNRA/D

02.6
76.1−

=
SNRbeff

UTN-FRBA 2010 Eng. Julian S. Bruno

Overflow errors and solutions

x(n)

b0

ecoeff

ecoeff ecoeff ecoeff

esat

y(t)

DAC

y(n)

eout(n)

b1 b2

memory

eround / etrunc

esat esat

Possible quantization errors

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

UTN-FRBA 2010 Eng. Julian S. Bruno

Avoiding overflow

 Always use the maximum capability (guard bits)
of the accumulators during internal calculations.

 Only round (or truncate) the final results to the
final data size and format if possible.

 There is (almost) no lost of precision when
handling internal calculations with guard bits.

UTN-FRBA 2010 Eng. Julian S. Bruno

Avoiding overflow

 Scaling down a signal is the most effective technique to
prevent overflow.

 Scaling down always implies loss of precision.
 Both scaling down and guard bits techniques must be

used in order to avoid overflow.
 Always is more convenient to scale down system’s

coefficients instead of signals.

0.9.β 0.8.β

Scale
System

Signal

UTN-FRBA 2010 Eng. Julian S. Bruno

Avoiding overflow

 Scaling down always reduces SNR.
 It is possible to use an absolute safe or a more relaxed criteria to choose

β value.
 Many times it is preferable to use different Q fractional formats within an

algorithm.
 As overflow is very probable to happen in fixed point processors, special

effort should be taken when coding algorithms and debugging.

Effect of β in SNR

For example adopting β=0.5 implies a
6.02 dB decrease of SNR. This is
equivalent that dividing by 2, rotating 1
time to the right, or losing 1 bit of
resolution.

Never
overflows 1

max
0

1
N

k
k

G
x h

−

=

<

∑

UTN-FRBA 2010 Eng. Julian S. Bruno

Avoiding overflow

2/11

0

2
max

1

<

∑
−

=

N

k
khx

G

1

max
0

1
N

k
k

G
x h

−

=

<

∑

()]max[
1

max kHx
G

ω
<

Scaling by sum of magnitude of
impulse response (L1 norm).

Scaling by square-root of the sum of
squared magnitude of impulse response
(L2 norm).

Scaling by the maximum of the
frequency response (Chebyshev norm).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
Freq response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8
(a) Freq response under L1 norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
(b) Freq response under L2 norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
(c) Freq response under Chebyshev norm

l1_norm = 4.8839
l2_norm = 1.5263
cheb_norm = 3.4926

UTN-FRBA 2010 Eng. Julian S. Bruno

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

Minimizing overflow effects

 Always use saturating arithmetic.
 In case overflow occurs, decrease the probability

that an oscillation occurs.

Without saturation arithmetic With saturation arithmetic

UTN-FRBA 2010 Eng. Julian S. Bruno

Truncation and Rounding

x(n)

b0

ecoeff

ecoeff ecoeff ecoeff

esat

y(t)

DAC

y(n)

eout(n)

b1 b2

memory

eround / etrunc

esat esat

Possible quantization errors

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

UTN-FRBA 2010 Eng. Julian S. Bruno

Truncation/Rounding in Multiply-
Accumulate

Rounding
or

truncation

16-bit

16-bit

32-bit
16-bit
or 8-bit

+
32-bit

accumulator

32-bit

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Using round.m

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Using floor.m

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Using ceil.m

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Using fix.m

UTN-FRBA 2010 Eng. Julian S. Bruno

Output
1

b(1)

-K-

a(3)

-K-

a(2)

-K-

Convert

Convert

Convert

Convert

z-1

z-1

Input
1

Truncation and Rounding

b(1)=0
a(2)=0.98
a(3)=-0.76

s(1)=10e-3
s(2)=0

Input = 0

0 10 20 30 40 50 60 70 80 90 100
-8

-6

-4

-2

0

2

4

6

8

10

12
x 10

-3

Fixed Point witn ceil
Fixed Point witn round
Floating Point

0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

1

2

3

x 10
-4

Fixed Point witn ceil
Fixed Point witn round
Floating Point

UTN-FRBA 2010 Eng. Julian S. Bruno

A limit cycle, sometimes referred
to as a multiplier roundoff limit
cycle, is a low-level oscillation
that can exist in an otherwise
stable filter as a result of the
nonlinearity associated with
rounding (or truncating) internal
filter calculations
Limit cycles require recursion
to exist and do not occur
in nonrecursive FIR filters

Coefficient Quantization Error

x(n)

b0

ecoeff

ecoeff ecoeff ecoeff

esat

y(t)

DAC

y(n)

eout(n)

b1 b2

memory

eround / etrunc

esat esat

Possible quantization errors

ADC z-1 z-1 z-1

× × × ×

+

x(t)

b3

+ +

ein(n)

UTN-FRBA 2010 Eng. Julian S. Bruno

Quantization word-length effects

 When defining a system in term of its coefficients, the finite
precision affect the behavior of the system itself.

 Though there is a grid of possible locations where system’s
poles can be placed.

 This grid depends first of the word-length and second of the
structure adopted to implement of the system.

Complex conjugated two poles band pass

And its difference equation

UTN-FRBA 2010 Eng. Julian S. Bruno

Quantization word-length effects

 There are structures are less sensitive to
coefficient quantization.

 There is a trade-off between efficiency and
sensibility to coefficient quantization.

UTN-FRBA 2010 Eng. Julian S. Bruno

Finite Wordlength Effects (I)

 Discretization (quantization) of the filter coefficients
has the effect of perturbing the location of the filter
poles and zeroes. This deterministic frequency
response error is referred to as coefficient
quantization error.

 The use of finite precision arithmetic makes it
necessary to quantize filter calculations by
rounding or truncation. Roundoff noise is that
error in the filter output that results from rounding
or truncating calculations within the filter.
* Bruce W. Bomar - University of Tennessee Space Institute

UTN-FRBA 2010 Eng. Julian S. Bruno

Finite Wordlength Effects (II)

 Quantization of the filter calculations also renders
the filter slightly nonlinear. However, for recursive
filters with a zero or constant input, this
nonlinearity can cause spurious oscillations called
limit cycles.

 With fixed-point arithmetic it is possible for filter
calculations to overflow. The term overflow
oscillation refers to a high-level oscillation that
can exist in an otherwise stable filter due to the
nonlinearity associated with the overflow of internal
filter calculations.
* Bruce W. Bomar - University of Tennessee Space Institute

UTN-FRBA 2010 Eng. Julian S. Bruno

Floating point representation

 This form of representation overcomes limitations
of precision and dynamic range of fixed point.

 This format segment data in sign, exponent and
mantissa.

 Mantissa is represented as a fixed point number.
 Exponent is represented in binary offset format.
 The greater the be the larger the dynamic range.
 The greater the bm the larger the precision.
 There is a trade off between bm and be, and the

best balance occur at be≈b/4 and bm≈3b/4.
 DR = 6.02*2be

UTN-FRBA 2010 Eng. Julian S. Bruno

Floating point representation (I)

 IEEE P754 is the most widely used floating point format.
 As the point is floating, a process called normalization is

performed in order to use the full precision of bm bits, while the
exponent is adjusted properly.

 Floating point arithmetic usually requires lot of logical
comparisons and branching, so software emulated floating
achieves low performance

 Floating point DSPs implements in hardware all arithmetic
handling, so these DSPs outperforms their fixed point
counterparts in ease of use and performance (of course being
more expensive too).

Sign (s) Exponent (e) Fraction(f)

IEEE Standard P754 Format

31 30 23 22 0Bit

1272,1)1(−⋅⋅−= es
ieee fvalue

UTN-FRBA 2010 Eng. Julian S. Bruno

Floating point representation (II)
Single Precision (32 bits) Double Precision (64 bits)

Sign Biased
exponent Fraction Value Sign Biased

exponent Fraction Value

Positive zero 0 0 0 0 0 0 0 0

Negative zero 1 0 0 -0 1 0 0 -0

Plus infinity 0 255(all 1s) 0 ∞ 0 255(all 1s) 0 ∞

Minus infinity 1 255(all 1s) 0 -∞ 1 255(all 1s) 0 -∞

NaN 0 or 1 255(all 1s) ≠0 NaN 0 o 1 255(all 1s) ≠0 NaN

Positive
normalized 0 0 < e < 255 f 2e-127 (1,f) 0 0 < e < 2047 f 2e-1023 (1,f)

Negative
normalized 1 0 < e < 255 f -2e-127 (1,f) 1 0 < e <2047 f -2e-1023 (1,f)

Positive
denormalized 0 0 f ≠ 0 2-126 (0,f) 0 0 f ≠ 0 2-1022 (0,f)

Negative
denormalized 1 0 f ≠ 0 -2-126 (0,f) 1 0 f ≠ 0 -2-1022 (0,f)

UTN-FRBA 2010 Eng. Julian S. Bruno

Normalized numbers (1,f 2e-127)

Denormalized
numbers
(0,f 2-126)

Unused

Gap = 1.4e-45

2-1260 2-125 2-124 2-123

2-1260 2-125 2-124 2-123

Gap = 1.4e-45

0 00000001 00000000000000000000000
Min. Positive Normalized

0 00000000 00000000000000000000001
Min. Positive Denormalized

Gap = 2.8e-45

Normalized & Denormalized
numbers (32-bit format)

38-968e08222875071.17549435
221 1261271 −− =×

45-9e43248170701.40129846
22)21(14912623 −−− ≅××

UTN-FRBA 2010 Eng. Julian S. Bruno

Multiply

MULTIPLY

¿X = 0?

Z 0

RETURN

¿Y = 0? Add
exponents

Subtract
bias

Exponent
overflow?

Report
overflow

Exponent
underflow?

Report
underflow

Multiply
significands

Normalize

Round RETURN

No

No

NoNo

Yes

YesYesYes

UTN-FRBA 2010 Eng. Julian S. Bruno

Division
DIVIDE

¿X = 0?

Z 0

RETURN

¿Y = 0?

Z ∞

Subtract
exponents Add bias

Exponent
overflow?

Exponent
underflow?

Divide
significands

Normalize

Round RETURN

Report
overflow

Report
underflow

No

No

No

No

Yes

YesYes Yes

UTN-FRBA 2010 Eng. Julian S. Bruno

Fixed Point hardware or Floating
Point Hardware ?

 There are both benefits and trade-offs to using Fix-PHw rather than
FL-PHw . Many applications require low-power and cost-effective
circuitry, which makes Fix-PHw a natural choice.

 Fix-PHw tends to be simpler and smaller. As a result, these units
require less power and cost less to produce than floating-point circuitry.

 FL-PHw is usually larger because it demands functionality and ease of
development. FL-PHw can accurately represent real-world numbers,
and its large dynamic range reduces the risk of overflow, quantization
errors, and the need for scaling. In contrast, the smaller dynamic range
of Fix-PHw that allows for low-power, inexpensive units brings the
possibility of these problems.

 Therefore, fixed-point development must minimize the negative effects
of these factors, while exploiting the benefits of Fix-PHw ; cost- and
size-effective units, less power and memory usage, and fast real-time
processing.

UTN-FRBA 2010 Eng. Julian S. Bruno

Recommended bibliography

 RG Lyons, Understanding Digital Signal Processing 2nd ed. Prentice
Hall. 2004.
 Ch12: Digital Data Formats and their effects.

 SW Smith, The Scientist and Engineer’s guide to DSP. California Tech.
Pub. 1997.
 Ch4: DSP software.

 VK Madisetti, DB Williams. Digital Signal Processing Handbook. CRC
Press.
 Ch3: Finite Wordlength Effects. Bruce W. Bomar

 SM Kuo, BH Lee. Real-Time Digital Signal Processing 2nd ed. John
Wiley and Sons. 2006.
 Ch 3.4 to 3.6: DSP Fundamentals and Implementations Considerations.

 WS Gan, SM Kuo. Embedded Signal Processing with the MSA. John
Wiley and Sons. 2007
 Ch 6: Real Time DSP Fundamentals and Implementations Considerations.

 NOTE: Many images used in this presentation were extracted from the recommended bibliography.
UTN-FRBA 2010 Eng. Julian S. Bruno

Thank you!

Questions?

UTN-FRBA 2010Eng. Julian S. Bruno

	Real Time�Digital �Signal �Processing��
	DSP fundamentals
	Number Representation
	Integer Fixed-Point Representation
	Fractional Fixed-Point Representation
	General Fixed-Point Representation
	Dynamic Ranges and Precision
	Scale Factors and Dynamic Range
	Examples
	How to convert fractional number into integer
	How to convert integer into fractional number
	Two’s complement system
	Geometric Depiction of Twos Complement Integers
	Sum in Two’s complement
	Sum in Two’s complement
	Multiplication in Two’s complement
	Multiplication in Two’s complement
	Multiplication: Why MSB is Redundant?
	Q format Multiplication
	Dynamic Range, Precision and Quantization errors
	ADC errors and solutions
	Analog Signal and Quantization
	Analog Signal and Quantization
	Oversampling Method
	Oversampling Method
	Dithering Method
	Analog Signal and Quantization
	Overflow errors and solutions
	Avoiding overflow
	Avoiding overflow
	Avoiding overflow
	Avoiding overflow
	Minimizing overflow effects
	Truncation and Rounding
	Truncation/Rounding in Multiply-Accumulate
	Truncation and Rounding
	Coefficient Quantization Error
	Quantization word-length effects
	Quantization word-length effects
	Finite Wordlength Effects (I)
	Finite Wordlength Effects (II)
	Floating point representation
	Floating point representation (I)
	Floating point representation (II)
	Normalized & Denormalized numbers (32-bit format)
	Multiply
	Division
	Fixed Point hardware or Floating Point Hardware ?
	Recommended bibliography
	Questions?

