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Number Representation

 8-bit Binary Data 
Format (Integer)

 8-bit Binary Data 
Format (Fractional)

 

= 27+25+24+20  
= 177 
 

1 0 1 1 0 0 0 1 

+27    26      25      24        23         22        21        20 
 
 
 
 (a) Unsigned integer 

1 0 1 1 0 0 0 1 

-27    26      25      24        23         22        21        20 
 
 
 
 (b) Signed integer (2’s complement) 

= −27+25+24+20  
= −79 
 

Radix point for integer 

 

= 23+21+20+2-4  
= 11.0625 
 

1 0 1 1 0 0 0 1 

+23    22      21      20        2-1         2-2        2-3        2-4 
 
 
 
 

1 0 1 1 0 0 0 1 

-23    22      21      20        2-1         2-2       2-3        2-4 
 
 
 
 (b) Signed fractional (4.4) format 

= -23+21+20+2-4  
= -4.9375 
 

Radix point for fractional 
number  

(a) Unsigned fractional (4.4) format 
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Integer Fixed-Point Representation

 N-bit fixed point, 2’s complement integer 
representation

X = -bN-1 2N-1 + bN-2 2N-2 + … + b020

 Difficult to use due to possible overflow 
 In a 16-bit processor, the dynamic range is  
-32,768 to 32,767.

 Example: 
200 × 350 = 70000, which is an overflow!
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Fractional Fixed-Point Representation

 Also called Q-format
 Fractional representation suitable for DSPs 

algorithms.
 Fractional number range is between 1 and -1
 Multiplying a fraction by a fraction always results in 

a fraction and will not produce an overflow (e.g., 
0.99 x 0.9999 less than 1)

 Successive additions may cause overflow
 Represent numbers between

 -1.0 and 1 − 2−(N-1), when N is number of bits
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mN bbx Decimal equivalency for 

QN formats
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General Fixed-Point Representation

 Qm.n notation
 m bits for integer portion
 n bits for fractional portion 
 Total number of bits N = m + n + 1, for signed numbers
 Example: 16-bit number (N=16) and Q2.13 format
 2 bits for integer portion
 13 bits for fractional portion
 1 signed bit (MSB)

 Special cases: 
 16-bit integer number (N=16) => Q15.0 format
 16-bit fractional number (N = 16) => Q0.15 format; also known 

as Q.15 or Q15 

nl
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N bbx −
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Decimal equivalency for 
QM.N formats
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Dynamic Ranges and Precision
Format (N.M) 

Largest positive value
(0x7FFF)

Least negative
value (0x8000)

Precision (0x0001) DR(dB)

1 15 0,999969482421875 -1 3,05176E-05 2^-15 90,30873362

2 14 1,99993896484375 -2 6,10352E-05 2^-14 90,30873362

3 13 3,9998779296875 -4 0,00012207 2^-13 90,30873362

4 12 7,999755859375 -8 0,000244141 2^-12 90,30873362

5 11 15,99951171875 -16 0,000488281 2^-11 90,30873362

6 10 31,99902344 -32 0,000976563 2^-10 90,30873362

7 9 63,99804688 -64 0,001953125 2^-9 90,30873362

8 8 127,9960938 -128 0,00390625 2^-8 90,30873362

9 7 255,9921875 -256 0,0078125 2^-7 90,30873362

10 6 511,984375 -512 0,015625 2^-6 90,30873362

11 5 1023,96875 -1024 0,03125 2^-5 90,30873362

12 4 2047,9375 -2048 0,0625 2^-4 90,30873362

13 3 4095,875 -4096 0,125 2^-3 90,30873362

14 2 8191,75 -8192 0,25 2^-2 90,30873362

15 1 16383,5 -16384 0,5 2^-1 90,30873362

16 0 32767 -32768 1 2^-0 90,30873362
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Scale Factors and Dynamic Range

Format Scaling factor ( ) Range in Hex (fractional value)

(1.15) 215 = 32768 0x7FFF (0.99) → 0x8000 (–1)

(2.14) 214 = 16384 0x7FFF (1.99) → 0x8000 (–2)

(3.13) 213 = 8192 0x7FFF (3.99) → 0x8000 (–4)

(4.12) 212 = 4096 0x7FFF (7.99) → 0x8000 (–8)

(5.11) 211 = 2048 0x7FFF (15.99) → 0x8000 (–16)

(6.10) 210 = 1024 0x7FFF (31.99) → 0x8000 (–32)

(7.9) 29 = 512 0x7FFF (63.99) → 0x8000 (–64)

(8.8) 28 = 256 0x7FFF (127.99) → 0x8000 (–128)

(9.7) 27 = 128 0x7FFF (511.99) → 0x8000 (–512)

(10.6) 26 = 64 0x7FFF (1023.99) → 0x8000 (–1024)

(11.5) 25 = 32 0x7FFF (2047.99) → 0x8000 (–2048)

(12.4) 24 = 16 0x7FFF (4095.99) → 0x8000 (–4096)

(13.3) 23 = 8 0x7FFF (4095.99) → 0x8000 (–4096)

(14.2) 22 = 4 0x7FFF (8191.99) → 0x8000 (–8192)

(15.1) 21 = 2 0x7FFF (16383.99) → 0x8000 (–16384)

(16.0) 20 = 1(Integer) 0x7FFF (32767) → 0x8000h (–32768)
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Examples

Hex. Number (16.0) format (4.12) format (1.15) format

0x7FFF

0x8000

0x1234

0xABCD

0x5566

Number (1.15) format (2.14) format (8.8) format (16.0) format

0.5

1.55

–1

–2.0345
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How to convert fractional number 
into integer

 Conversion from fractional to integer value:
 Step 1: normalize the decimal fractional number to the 

range determined by the desired Q format
 Step 2: Multiply the normalized fractional number by 2n

 Step 3: Round the product to the nearest integer
 Step 4: Write the decimal integer value in binary using N 

bits.
 Example: 

 Convert the value 3,5 into an integer value that can be 
recognized by a DSP assembler using the Q15 format: 
 1) Normalize: 3,5/4 = 0,875; 
 2) Scale: 0.875*2^15= 28.672; 
 3) Round: 28.672  
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How to convert integer into 
fractional number

 Numbers and arithmetic results are stored in the 
DSP processor in integer form.

 Need to interpret as a fractional value depending 
on Q format

 Conversion of integer into a fractional number for 
Qm.n format:
 Divide integer by scaling factor of Qm.n => divide by 

2n

 Example: 
 Which Q15 value does the integer number 2 

represent?  2/215=2*2-15=2-14
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Two’s complement system

B=2

011 3

010 2

001 1

000 0

111 -1

110 -2

101 -3

100 -4

Sign bit  011= 3
101=-3

Range -2b to (2b-1)
For b+1 data bits 

Negation mechanism

Step Result

Original number 011=3

1 complement 100

Add 1 101

101=-3

DRdB= 6.02dB . (N-1)

 One bit for sign, B for number representation.
 Very popular system, widely used.
 Same logic for sum and subtraction.

( )

dBbDR
b(DR

)(DR

dB

b
dB

b
dB

b

⋅=
⋅⋅=⋅=

−⋅=⋅= −

02.6
)2(log20)2log20

12log20log20

1010

101
12

10

( )valuewordpossiblesmallest
valuewordpossiblelargest

10log20

dBin  Range Dynamic :

⋅=dB

dB

DR

DR
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Geometric Depiction of Twos 
Complement Integers
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Sum in Two’s complement

1 0 1 1 -510

+
0 1 1 0 610

0 0 0 1 110

1 0 1 1 -510

+
1 0 0 0 -810

1 0 0 1 1 -1310

Overflow !

1. 0 1 1 -0.62510

+
0. 1 1 0 0.7510

0. 0 0 1 0.12510

1. 0 1 1 -0.62510

+
1. 0 0 0 -110

1 0. 0 1 1 -1.62510

Overflow !

Q3 Format

Integer Format
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Sum in Two’s complement

3.0 1 0 1 1 . 0 -510

+
1.1 0 0 0 1 . 1 1.510

3.1 1 1 0 0 . 1 -3.510

Different Formats
1.2 1 1 . 0 1 0 -0.7510

+
0.3 0 0 . 0 1 1 0.37510

1.3 1 1 . 1 0 1 -0.37510

For C=A+B, where 
A is in P.Q format
B is in R.S format

The result C is in max(P,R).max(Q,S) format
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Multiplication in Two’s complement

4.0 1 0 1 1. -510

x
4.0 0 1 1 0. 610

Integer Format

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1 1 0 0 0 1 0. -3010

For C=AxB, where 
A and B are B bits wide, C is 2B bits wide.

Sign 
extension

1.3 1. 0 1 1 -0.62510

x
1.3 0. 1 1 0 0.7510

Fractional Format Q3

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1. 1 0 0 0 1 0 -0.468810
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Multiplication in Two’s complement

Different formats
3.1 1 0 1. 1 -2.510

x
2.2 0 1. 1 0 1.510

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1 1 0 0. 0 1 0 -3.7510

Sign 
extension

1.3 1. 0 1 1 -0.62510

x
2.2 0 1. 1 0 1.510

0 0 0 0
1 1 1 0 1 1
1 1 0 1 1
0 0 0 0

1 1 1. 0 0 0 1 0 -0.937510

For C=AxB, where 
A is in P.Q format and B is in R.S format

The result’s is in (P+R).(Q+S)
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Multiplication: Why MSB is 
Redundant?

 Number represented by 4 bits (N = 4)
 2’s complement range is from -8 to +7.
 The min/max number obtained from 

multiplication is  -56/+64 ⇒ 7 bits are enough to 
represent the result.

 NxN  => 2N-1 bits
 The additional MSB is a  “sign extension bit” 

and can be removed
 Another way to interpret it is that if converted to 

unsigned the multiplication result will be (N-1) + 
(N-1) + 1 sign bits giving 2N – 1.
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Q format Multiplication
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Q15 Q15

X

16-bit memory

15 bits15 bits

Sign bit

Extension sign bit

 Product of two Q15 numbers is Q30.
 So we must remember that the 32-bit product has two bits in front of the binary 

point.
 Since NxN multiplication yields 2N-1 result
 Addition MSB sign extension bit
 Typically, only the most significant 15 bits (plus the sign bit) are stored back into 

memory, so the write operation requires a left shift by one.



Dynamic Range, Precision and 
Quantization errors

 

x(n) 

b0 
 

ecoeff  

 

ecoeff ecoeff  ecoeff 

esat  

y(t) 

 
DAC 

y(n) 

eout(n) 

b1 b2 

 

memory 

eround / etrunc 

esat  esat  

Possible quantization errors 

 
ADC z-1 z-1 z-1 

× × × × 

+ 

x(t) 

b3 

 

+ + 

ein(n) 
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ADC errors and solutions

 

x(n) 

b0 
 

ecoeff  

 

ecoeff ecoeff  ecoeff 

esat  

y(t) 

 
DAC 

y(n) 

eout(n) 

b1 b2 

 

memory 

eround / etrunc 

esat  esat  

Possible quantization errors 

 
ADC z-1 z-1 z-1 

× × × × 

+ 

x(t) 

b3 

 

+ + 

ein(n) 
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Analog Signal and Quantization

 The codec and system’s 
coefficients are the main 
generators of quantization 
noise.

 Codec’s noise can be thought 
as a uniformly distributed PDF 
between –LSB/2 and LSB/2.

 The SNR of an ADC is 
proportional to the word-length 
and the loading factor.

 Oversampling and Dithering

0em =

2 2 /12eσ = ∆

Mean and 
Variance of 
Quantization 
Error

Quantization Step
B

Vp
2

2
=∆
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Oversampling Method
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BW
fsbdBdBSNR

BW
fs PG DA 2

log1002.676.1;
2

log10 :Gain Prosessing /

Oversampling and Decimating Method

The number of bits used for the lowpass filter's 
coefficients and registers must exceed the original 
number of ADC bits in order to benefit from the 
oversampling scheme



Oversampling Method

Normal Averaging Rolling Average
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It’s ideally suited for applications 
requiring oversampling and higher 
sample rates

It’s ideally used in cases where the 
sampling frequency is low compared to 
the sampling rate of the ADC



Dithering Method
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Dithering forces the quantization 
noise to lose its coherence with 
the original input signal.

•Low-amplitude analog signals.
•Highly periodic analog signals.
•Slowly varying (DC to very low 
frequency) analog signals.



Analog Signal and Quantization

 SNRA/D >= SNRsignal
 In practice, SNRA/D =SNRA/D ideal -3 to 6 dB

 Aperture jitter error
 Missing output bit patterns
 Other nonlinearities

 It’s imprudent to force an A/D convert’s input to full 
scale. Use LF to determine A/D’s SNR. 

 Effective Numbers Of Bits (ENOB)

 SNRDSP >= SNRA/D

02.6
76.1−

=
SNRbeff
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Overflow errors and solutions

 

x(n) 

b0 
 

ecoeff  

 

ecoeff ecoeff  ecoeff 

esat  

y(t) 

 
DAC 

y(n) 

eout(n) 

b1 b2 

 

memory 

eround / etrunc 

esat  esat  

Possible quantization errors 

 
ADC z-1 z-1 z-1 

× × × × 

+ 

x(t) 

b3 

 

+ + 

ein(n) 
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Avoiding overflow

 Always use the maximum capability (guard bits) 
of the accumulators during internal calculations.

 Only round (or truncate) the final results to the 
final data size and format if possible.

 There is (almost) no lost of precision when 
handling internal calculations with guard bits.
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Avoiding overflow

 Scaling down a signal is the most effective technique to 
prevent overflow.

 Scaling down always implies loss of precision.
 Both scaling down and guard bits techniques must be 

used in order to avoid overflow.
 Always is more convenient to scale down system’s 

coefficients instead of signals.

0.9.β 0.8.β

Scale
System

Signal
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Avoiding overflow

 Scaling down always reduces SNR.
 It is possible to use an absolute safe or a more relaxed criteria to choose 

β value.
 Many times it is preferable to use different Q fractional formats within an 

algorithm.
 As overflow is very probable to happen in fixed point processors, special 

effort should be taken when coding algorithms and debugging.

Effect of β in SNR

For example adopting β=0.5 implies a 
6.02 dB decrease of SNR. This is 
equivalent that dividing by 2, rotating 1 
time to the right, or losing 1 bit of 
resolution.

Never 
overflows 1

max
0

1
N

k
k

G
x h

−

=

<

∑
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Avoiding overflow

2/11

0

2
max

1









<

∑
−

=

N

k
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1

max
0

1
N

k
k

G
x h

−

=

<

∑

( )]max[
1

max kHx
G

ω
<

Scaling by sum of magnitude of 
impulse response (L1 norm).

Scaling by square-root of the sum of 
squared magnitude of impulse response 
(L2 norm).

Scaling by the maximum of the 
frequency response (Chebyshev norm).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
Freq response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8
(a) Freq response under L1 norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
(b) Freq response under L2 norm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.4
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0.8

1
(c) Freq response under Chebyshev norm

l1_norm = 4.8839
l2_norm = 1.5263
cheb_norm = 3.4926
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Minimizing overflow effects

 Always use saturating arithmetic.
 In case overflow occurs, decrease the probability 

that an oscillation occurs.

Without saturation arithmetic With saturation arithmetic
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Truncation and Rounding

 

x(n) 

b0 
 

ecoeff  
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y(n) 

eout(n) 

b1 b2 
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esat  esat  

Possible quantization errors 
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+ 
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+ + 

ein(n) 
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Truncation/Rounding in Multiply-
Accumulate

 

Rounding 
or 

truncation 

16-bit 

16-bit 

32-bit 
16-bit 
or 8-bit 

+ 
32-bit 

accumulator 

32-bit 

0 2 4 6 8 10 12 14 16 18 20
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Using round.m
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-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Using floor.m
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Using ceil.m
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Using fix.m
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Output
1

b(1)

-K-

a(3)

-K-

a(2)

-K-

Convert

Convert

Convert

Convert

z-1

z-1

Input
1

Truncation and Rounding

b(1)=0
a(2)=0.98
a(3)=-0.76

s(1)=10e-3
s(2)=0
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Fixed Point witn round
Floating Point
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A limit cycle, sometimes referred 
to as a multiplier roundoff limit 
cycle, is a low-level oscillation 
that can exist in an otherwise 
stable filter as a result of the 
nonlinearity associated with 
rounding (or truncating) internal
filter calculations
Limit cycles require recursion 
to exist and do not occur
in nonrecursive FIR filters



Coefficient Quantization Error
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Quantization word-length effects

 When defining a system in term of its coefficients, the finite 
precision affect the behavior of the system itself.

 Though there is a grid of possible locations where system’s 
poles can be placed.

 This grid depends first of the word-length and second of the 
structure adopted to implement of the system.

Complex conjugated two poles band pass

And its difference equation
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Quantization word-length effects

 There are structures are less sensitive to 
coefficient quantization.

 There is a trade-off between efficiency and 
sensibility to coefficient quantization.
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Finite Wordlength Effects (I)

 Discretization (quantization) of the filter coefficients 
has the effect of perturbing the location of the filter 
poles and zeroes. This deterministic frequency 
response error is referred to as coefficient 
quantization error.

 The use of finite precision arithmetic makes it 
necessary to quantize filter calculations by 
rounding or truncation. Roundoff noise is that 
error in the filter output that results from rounding 
or truncating calculations within the filter. 
* Bruce W. Bomar - University of Tennessee Space Institute
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Finite Wordlength Effects (II)

 Quantization of the filter calculations also renders 
the filter slightly nonlinear. However, for recursive 
filters with a zero or constant input, this 
nonlinearity can cause spurious oscillations called 
limit cycles.

 With fixed-point arithmetic it is possible for filter 
calculations to overflow. The term overflow 
oscillation refers to a high-level oscillation that 
can exist in an otherwise stable filter due to the 
nonlinearity associated with the overflow of internal 
filter calculations.
* Bruce W. Bomar - University of Tennessee Space Institute
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Floating point representation

 This form of representation overcomes limitations 
of precision and dynamic range of fixed point.

 This format segment data in sign, exponent and 
mantissa.

 Mantissa is represented as a fixed point number.
 Exponent is represented in binary offset format.
 The greater the be the larger the dynamic range.
 The greater the bm the larger the precision.
 There is a trade off between bm and be, and the 

best balance occur at be≈b/4 and bm≈3b/4.
 DR = 6.02*2be
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Floating point representation (I)

 IEEE P754 is the most widely used floating point format.
 As the point is floating, a process called normalization is 

performed in order to use the full precision of bm bits, while the 
exponent is adjusted properly.

 Floating point arithmetic usually requires lot of logical 
comparisons and branching, so software emulated floating 
achieves low performance

 Floating point DSPs implements in hardware all arithmetic 
handling, so these DSPs outperforms their fixed point 
counterparts in ease of use and performance (of course being 
more expensive too).

Sign (s) Exponent (e) Fraction(f)

IEEE Standard P754 Format

31 30 23 22 0Bit

1272,1)1( −⋅⋅−= es
ieee fvalue
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Floating point representation (II)
Single Precision (32 bits) Double Precision (64 bits)

Sign Biased 
exponent Fraction Value Sign Biased 

exponent Fraction Value

Positive zero 0 0 0 0 0 0 0 0

Negative zero 1 0 0 -0 1 0 0 -0

Plus infinity 0 255(all 1s) 0 ∞ 0 255(all 1s) 0 ∞

Minus infinity 1 255(all 1s) 0 -∞ 1 255(all 1s) 0 -∞

NaN 0 or 1 255(all 1s) ≠0 NaN 0 o 1 255(all 1s) ≠0 NaN

Positive 
normalized 0 0 < e < 255 f 2e-127 (1,f) 0 0 < e < 2047 f 2e-1023 (1,f)

Negative 
normalized 1 0 < e < 255 f -2e-127 (1,f) 1 0 < e <2047 f -2e-1023 (1,f)

Positive 
denormalized 0 0 f ≠ 0 2-126 (0,f) 0 0 f ≠ 0 2-1022 (0,f)

Negative 
denormalized 1 0 f ≠ 0 -2-126 (0,f) 1 0 f ≠ 0 -2-1022 (0,f)
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Normalized numbers ( 1,f  2e-127)

Denormalized 
numbers
( 0,f  2-126)

Unused

Gap = 1.4e-45

2-1260 2-125 2-124 2-123

2-1260 2-125 2-124 2-123

Gap = 1.4e-45

0 00000001 00000000000000000000000
Min. Positive Normalized

0 00000000 00000000000000000000001
Min. Positive Denormalized  

Gap = 2.8e-45

Normalized & Denormalized
numbers (32-bit format )

38-968e08222875071.17549435
221 1261271 −− =×

45-9e43248170701.40129846
22)21( 14912623 −−− ≅××
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Multiply

MULTIPLY

¿X = 0?

Z      0

RETURN

¿Y = 0? Add 
exponents

Subtract 
bias

Exponent 
overflow?

Report 
overflow

Exponent 
underflow?

Report 
underflow

Multiply 
significands

Normalize

Round RETURN

No

No

NoNo

Yes

YesYesYes
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Division
DIVIDE

¿X = 0?

Z        0

RETURN

¿Y = 0?

Z     ∞

Subtract 
exponents Add bias

Exponent 
overflow?

Exponent 
underflow?

Divide 
significands

Normalize

Round RETURN

Report 
overflow

Report 
underflow

No

No

No

No

Yes

YesYes Yes
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Fixed Point hardware or Floating
Point Hardware ?

 There are both benefits and trade-offs to using Fix-PHw rather than 
FL-PHw . Many applications require low-power and cost-effective 
circuitry, which makes Fix-PHw a natural choice. 

 Fix-PHw tends to be simpler and smaller. As a result, these units 
require less power and cost less to produce than floating-point circuitry.

 FL-PHw is usually larger because it demands functionality and ease of 
development. FL-PHw can accurately represent real-world numbers, 
and its large dynamic range reduces the risk of overflow, quantization 
errors, and the need for scaling. In contrast, the smaller dynamic range 
of Fix-PHw that allows for low-power, inexpensive units brings the 
possibility of these problems. 

 Therefore, fixed-point development must minimize the negative effects 
of these factors, while exploiting the benefits of Fix-PHw ; cost- and 
size-effective units, less power and memory usage, and fast real-time 
processing.

UTN-FRBA 2010 Eng. Julian S. Bruno



Recommended bibliography

 RG Lyons, Understanding Digital Signal Processing 2nd ed. Prentice 
Hall. 2004.
 Ch12: Digital Data Formats and their effects.

 SW Smith, The Scientist and Engineer’s guide to DSP. California Tech. 
Pub. 1997.
 Ch4: DSP software.

 VK Madisetti, DB Williams. Digital Signal Processing Handbook. CRC 
Press.
 Ch3: Finite Wordlength Effects. Bruce W. Bomar

 SM Kuo, BH Lee. Real-Time Digital Signal Processing 2nd ed. John 
Wiley and Sons. 2006.
 Ch 3.4 to 3.6: DSP Fundamentals and Implementations Considerations.

 WS Gan, SM Kuo. Embedded Signal Processing with the MSA. John 
Wiley and Sons. 2007
 Ch 6: Real Time DSP Fundamentals and Implementations Considerations.

 NOTE: Many images used in this presentation were extracted from the recommended bibliography.
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Thank you!

Questions?
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