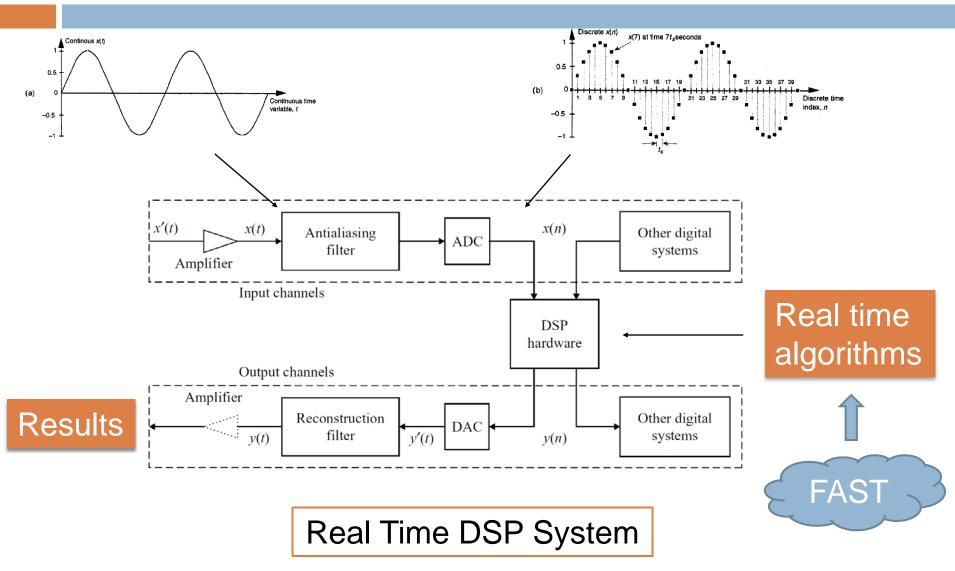
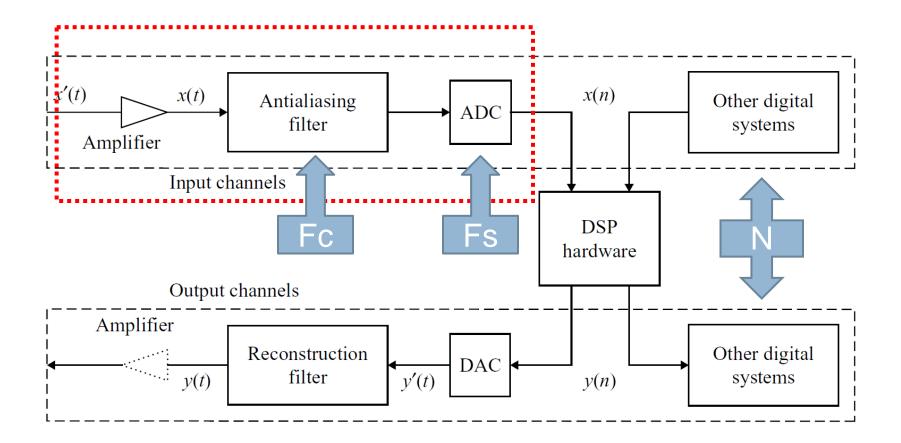
Eng. Julian S. Bruno

REAL TIME DIGITAL SIGNAL PROCESSING

UTN-FRBA 2010

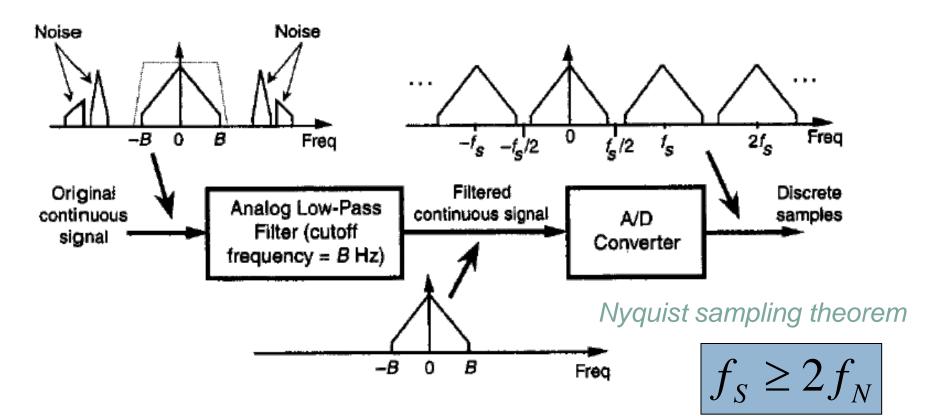

Introduction

Why Digital? A brief comparison with analog.


Advantages

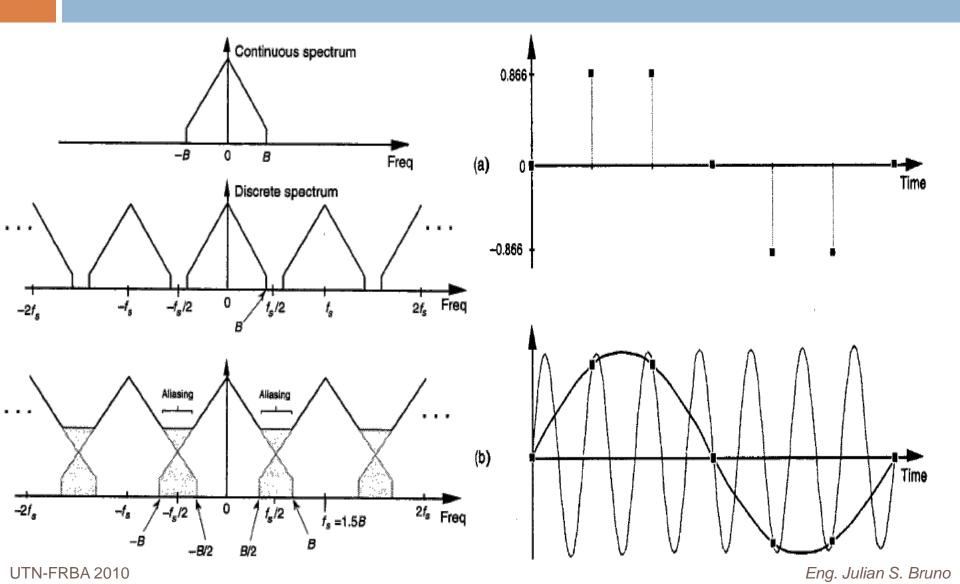
- □ *Flexibility*. Easily modifiable and upgradeable.
- Reproducibility. Don't depend on components tolerance. Exactly reproduced from one unit to other.
- □ *Reliability*. No age or environmental drift.
- Complexity. Allows sophisticated applications in only one chip.

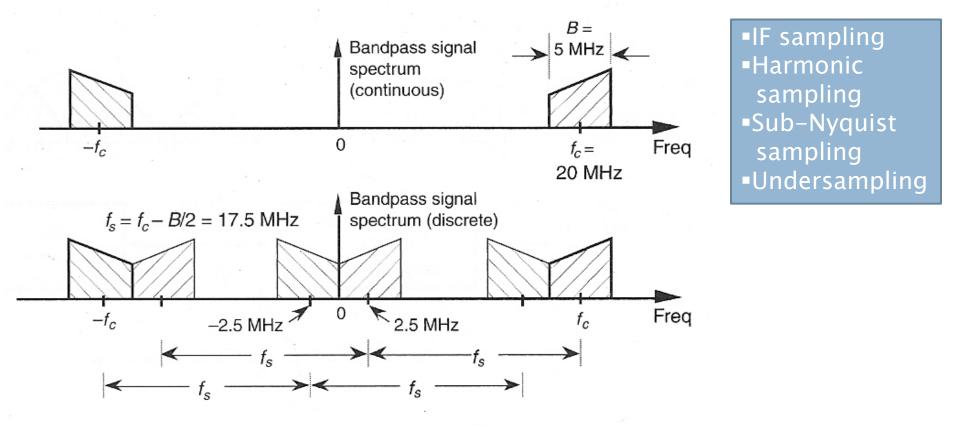
The BIG picture


Sampling signals: A very important first step.

Real Time DSP System

Sampling low-pass signals (CT)


The sampling theorem indicates that a continuous signal can be properly sampled, only if it does not contain frequency components above one-half of the sampling rate.

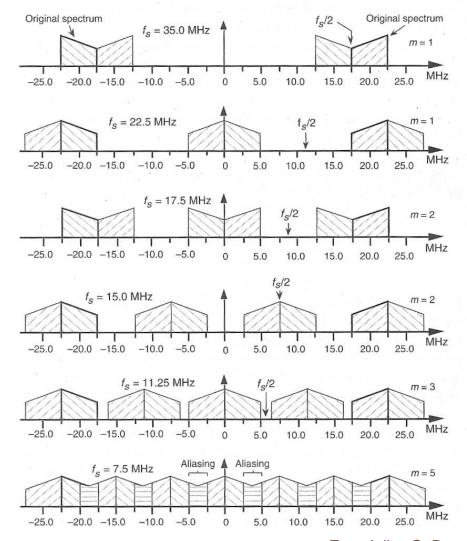

Eng. Julian S. Bruno

UTN-FRBA 2010

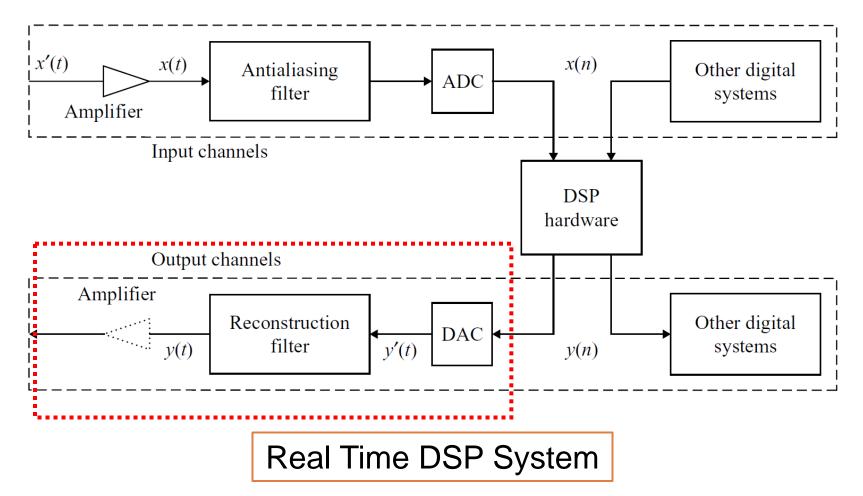
Aliasing and frequency ambiguity

Sampling band-pass signals

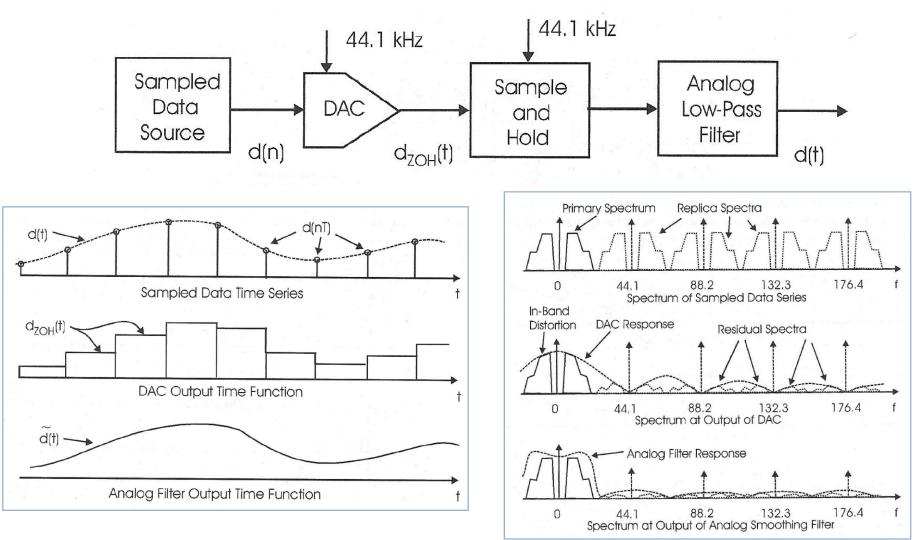
$$\frac{2f_c - B}{m} \ge f_s \ge \frac{2f_c + B}{m + 1}$$


for any positive integer m, where $fs \ge 2B$ is accomplished.

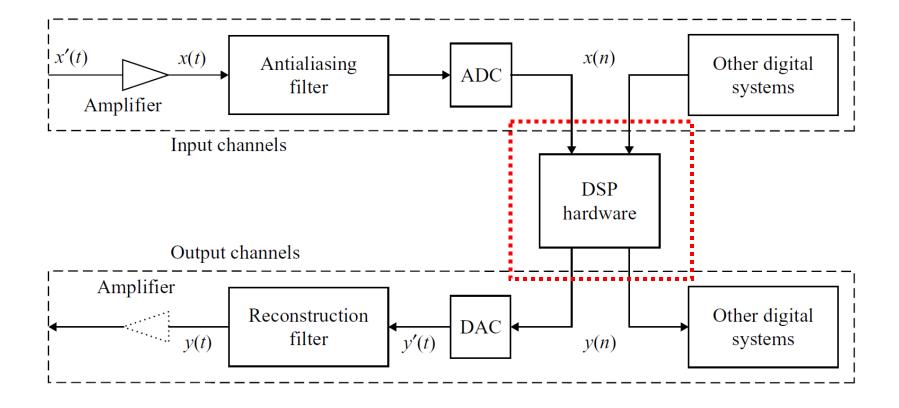
UTN-FRBA 2010


Sampling band-pass signals

m	(2Fc-B)/m	(2Fc-B)/(m+1)	Optimum Fs
1	35.0 MHz	22.5 MHz	22.5 MHz
2	17.5 MHz	15.0 MHz	17.5 MHz
3	11.66 MHz	11.25 MHz	11.25 MHz
4	8.75 MHz	9.0 MHz	-
5	7.0 MHz	7.5 MHz	-


Optimum Fs is defined here as that optimum frequency where spectral replications do no butt up against each other except at zero Hz

Reconstruction signals


Reconstruction Errors

UTN-FRBA 2010

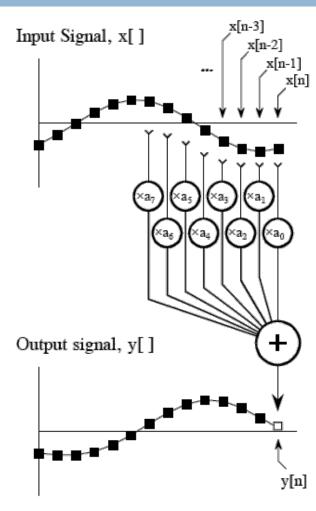
Eng. Julian S. Bruno

DSP hardware

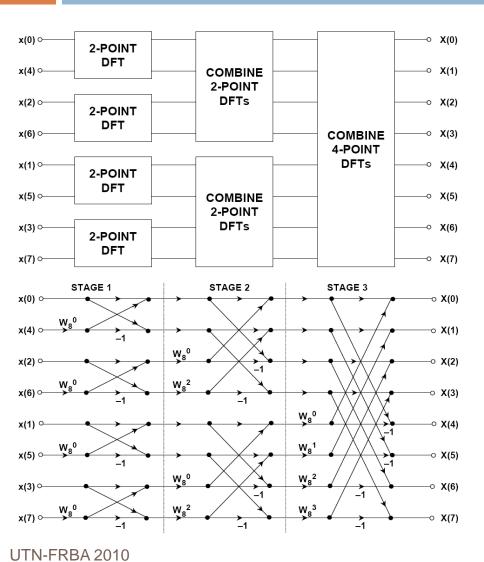
Real Time DSP System

What can we do with a DSP?

- Almost any linear and nonlinear system (PID controller).
- Digital filters (FIR-IIR).
- Adaptive systems (LMS algorithm).
- Modulators and demodulators.
- Any mathematical intensive algorithm (FFT-DCT-WT).


Real time constraints

- Algorithms time (t_A) MUST fit between two consecutive sampling periods (t_S).
- Thus t_A limits the maximum frequency that a system can work.
- The definition of real time is VERY application dependent (faster speed of evolution of the system).


Linear systems implementation

$$x(n) \qquad h(n) \qquad y(n) = x(n) * h(n)$$
$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{k=-\infty}^{\infty} h(k)x(n-k),$$

- Being x(n) and h(n) are arrays of numbers. If we want to compute y(n) we have to multiply and sum the last M samples, being M the length of h(n). This repeated for every new sample received from de ADC.
- As you can see, any linear system uses multiplications, accumulations (sums), and loops intensively.

Fast Fourier Transform FFT

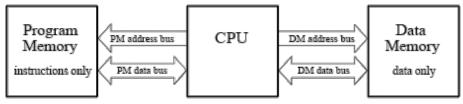
$$X(0) = A(0) + W_8^0 B(0) = 0 + j0 + (1 + j0)(0 + j0) = 0 + j0 + 0 + j0 = 0 \angle 0^\circ,$$

- $X(1) = A(1) + W_8^1 B(1) = 0 j1.999 + (0.707 j0.707)(1.414 j1.414)$ = 0 - j1.999 + 0 - j1.999 = 0 - j4 = 4 \angle -90°
- $X(2) = A(2) + W_8^2 B(2) = 1.414 + j0 + (0 j1)(-1.414 + j0)$ = 1.414 + j0 + 0 + j1.4242 = 1.414 + j1.414 = 2 $\angle 45^\circ$,
- $X(3) = A(3) + W_8^3 B(3) = 0 + j1.999 + (-0.707 j0.707)(1.414 + j1.414)$ = 0 + j1.999 + 0 - j1.999 = 0 ∠0°,
- $X(4) = A(0) + W_8^4 B(0) = 0 + j0 + (-1 + j0)(0 + j0)$ = 0 + j0 + 0 + j0 = 0 \angle 0°,
- $X(5) = A(1) + W_8^5 B(1) = 0 j1.999 + (-0.707 + j0.707)(1.414 j1.414)$ = 0 - j1.999 + 0 + j1.999 = 0 $\angle 0^\circ$,
- $X(6) = A(2) + W_8^6 B(2) = 1.414 + j0 + (0 + j1)(-1.414 + j0)$ = 1.414 + j0 + 0 - j1.414 = 1.414 - j1.414 = 2 $\angle -45^\circ$, and

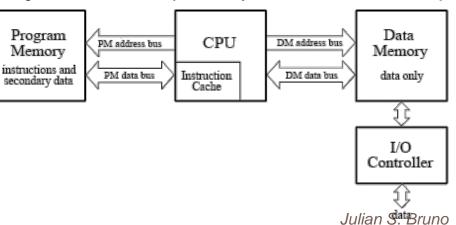
 $X(7) = A(3) + W_8^7 B(3) = 0 + j1.999 + (0.707 + j0.707)(1.414 + j1.414)$ = 0 + j1.999 + 0 + j1.999 = 0 + j4 = 4 ∠90°.

Summary of desirable features of a DSP

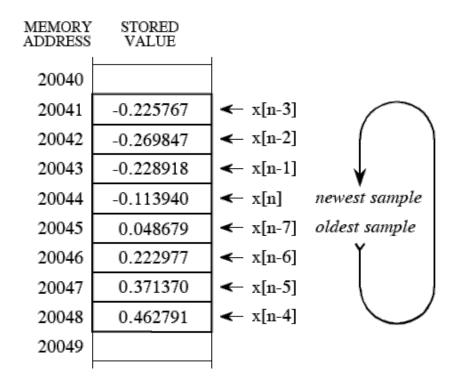
- Fast in mathematics operations, and combinations of them (multiply and sum specially).
- Flexible addressing modes (bit reversal, circular buffers, zero overhead loops)
- DSP specific instruction set (arithmetic shifting, saturating arithmetic, rounding, normalization)
- Minimum overhead peripherals (communications devices specially)
- DSP instructions for specific applications (Video, Control, Audio)


So, those are DSP math features

- Multiply and Accumulators (MAC's) units.
- ALU's (fixed and floating point).
- Barrel shifters.
- Depending on DSP application, more than one unit are present in modern DSP's, allowing parallelism.
- Harvard (modified) architecture provide multiple operations per cycle.


a. Von Neumann Architecture (single memory)

b. Harvard Architecture (dual memory)



c. Super Harvard Architecture (dual memory, instruction cache, I/O controller)

Another important features

- RISC like registers and instruction set
- Multiple data/program buses.
- Address generator units for flexible addressing and efficient looping.
- DMA controller for handling peripherals.

DSP clasification

- Fixed or Floating point arithmetic.
- Millions of multiply–accumulate operations per second, MMACs.
- Millions of floating-point operations per second, MFLOPS.
- Application specific features (video, audio, control, communications).

Memory

Why DSP hardware?

	ASIC	FPGA	μ P/ μ C	DSP processor	DSP processors with HW accelerators
Flexibility	None	Limited	High	High	Medium
Design time	Long	Medium	Short	Short	Short
Power consumption	Low	Low-medium	Medium-high	Low-medium	Low-medium
Performance	High	High	Low-medium	Medium-high	High
Development cost	High	Medium	Low	Low	Low
Production cost	Low	Low-medium	Medium-high	Low-medium	Medium

- Special-purpose (custom) chips such as application-specific integrated circuits (ASIC).
- Field-programmable gate arrays (FPGA).
- General-purpose microprocessors or microcontrollers ($\mu P/\mu C$).
- General-purpose digital signal processors (DSP processors).
- DSP processors with application-specific hardware (HW) accelerators.

UTN-FRBA 2010

TI Processors

□ DaVinci[™] Digital Media Processors

Optimized for digital video systems

□ OMAP[™] Applications Processors

ARM9-based devices. LP, general-purpose, multimedia and graphics processing

□ C6000[™] High Performance DSPs

Ideal for imaging, broadband infrastructure and performance audio applications.

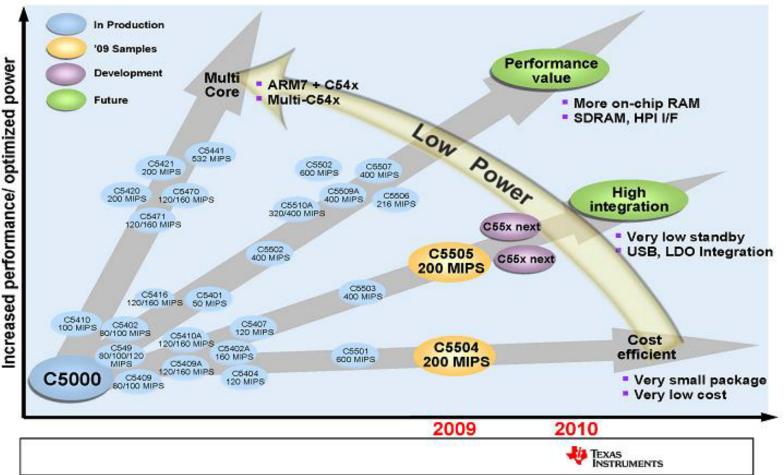
□ C6000[™] Performance Value DSPs

Ideal for broadband infrastructure and performance audio applications. Lower cost.

□ C6000[™] Floating-point DSPs

Ideal for professional audio products, biometrics, medical, industrial, digital imaging, speech recognition, conference phones and voice-over packet

□ C5000[™] Power-Efficient DSPs


Optimized for power- and cost-efficient embedded signal processing solutions

□ C2000[™] 32-bit Real-time MCUs

Optimized core can run multiple complex control algorithms at speeds necessary for demanding control applications

C5000[™] DSP Platform Roadmap Framework

Low power C5000™ DSP portfolio

UTN-FRBA 2010

Eng. Julian S. Bruno

ADI Processors

TigerSHARC® Processors

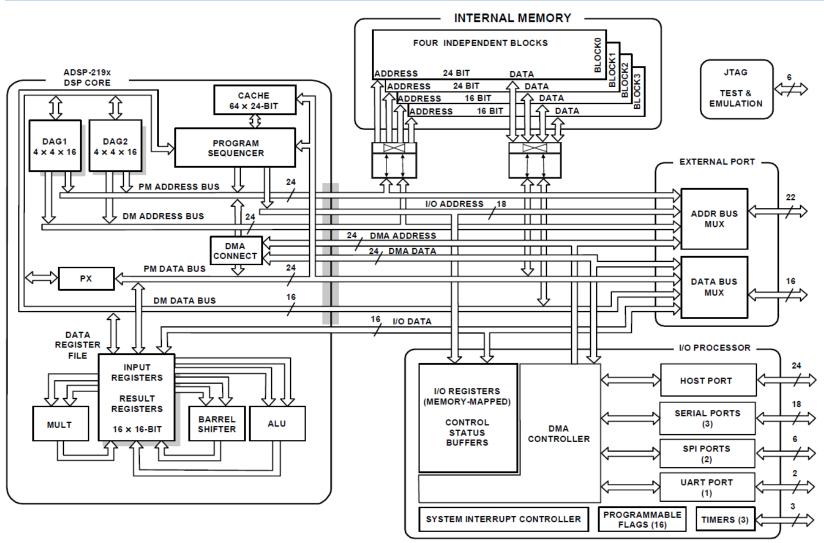
- 32-bit fixed-point as well as floating-point
- Clock Speed: 250MHz to 600MHz
- 4.8 GMACs of 16-bit performance / 3.6 GFLOPs
- 24 Mbits of on- chip memory
- 5 Gbytes of I/O bandwidth

SHARC® Processors

- 32-Bit floating-point
- Clock Speed: 150MHz to 400MHz / 2.4 GFLOPs.
- Accelerator Architecture: FIR, IIR, FFT.

Blackfin® Processors

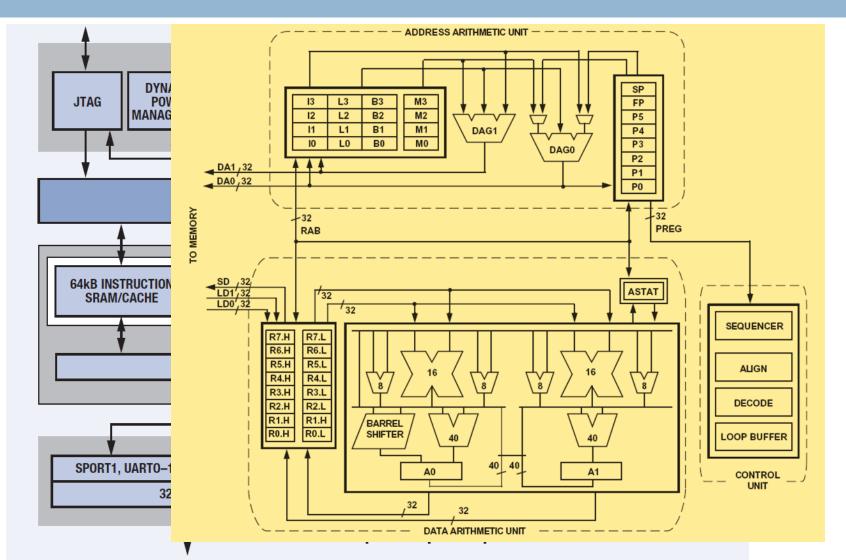
- 16/32-bit fixed point
- Clock Speed: 200MHz to 756MHz / 1.5 GMACs
- Very low power consumption: 0.23mW/Mhz
- RTOS supported. Multicore 600MHz / 2.4 GMACs.


ADSP-21xx Processors

- 16/32-bit fixed point
- Clock Speed: 75MHz to 160MHz

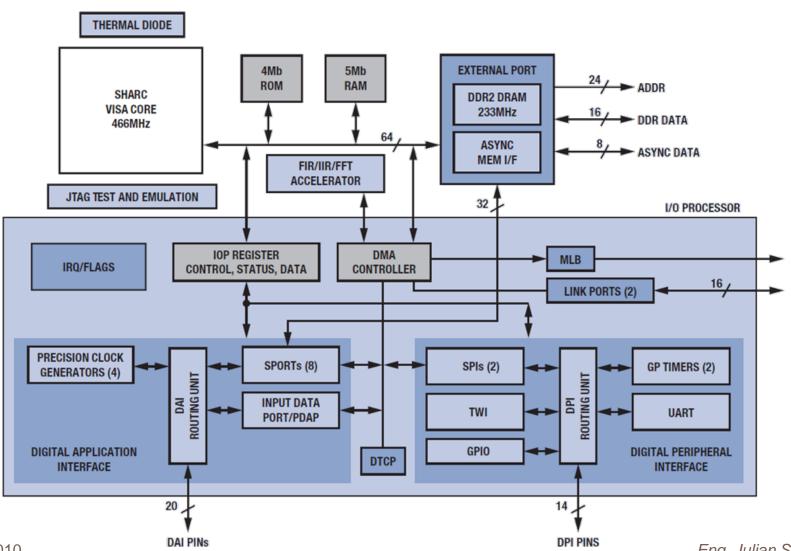
UTN-FREA Analog Devices brought first programmable processor to market in 1986

ADSP-21xx Processors


ADSP-2191 BLOCK DIAGRAM

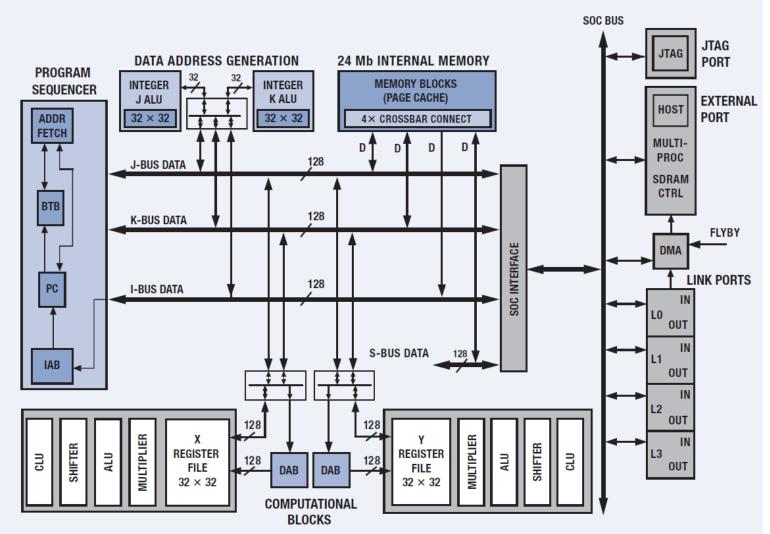
UTN-FRBA 2010

Blackfin Processors


ADSP-BF536/ADSP-BF537 BLOCK DIAGRAM

UTN-FRBA 2010

SHARC Processors


ADSP-2146x BLOCK DIAGRAM

UTN-FRBA 2010

TigerSHARC Processor

ADSP-TS201S BLOCK DIAGRAM

UTN-FRBA 2010

Markets and Applications

Market	Applications	Architecture/ Platform				
Communications						
Broadband	Broadband over Power Lines	Blackfin				
	Digital Media Gateways (VOD)	Blackfin				
	Home Networking	Blackfin				
	IP PBX	Blackfin				
	IP Set-Top Box	Blackfin				
	Media Node	Blackfin				
	Multimedia over IP	Blackfin				
	Video Conferencing/Phone	Blackfin				
	Video Surveillance/Security	Blackfin				
	Voice over IP	Blackfin				
Wireless	Access (Broadband) (i.e., 802.16)	Blackfin, TigerSHARC				
	Base Station	TigerSHARC				
	Cellular Location	Blackfin				
	Satellite Phone	Blackfin				
Automotive						
In Cabin	Audio Amplifier	SHARC				
	Audio Jukebox	Blackfin				
	Digital Radio	Blackfin				
	Driver Assistance	Blackfin				
	Handsfree	Blackfin				
	Head Unit	Blackfin, SHARC				
	Multimedia Device Interface	Blackfin				
	Navigation	Blackfin				
	Occupancy/Classifications	Blackfin				
	Premium Audio System	SHARC				
	Rear Seat Audio/Video	Blackfin				

Market	Applications	Architecture/ Platform	
Industrial and Instri	umentation		
Medical	СТ	Blackfin, SHARC, TigerSHARC	
	Diagnostic	Blackfin, SHARC, TigerSHARC	
	MRI	SHARC, TigerSHARC	
	Patient Monitoring	Blackfin, SHARC, TigerSHARC	
	Portable Medical	Blackfin, SHARC	
	Ultrasound	Blackfin, SHARC, TigerSHARC	
	X-Ray	SHARC, TigerSHARC	
Point of Sale	Scanner	Blackfin	
	Vending Machine	Blackfin	
Test/ Measurement	ATE	Blackfin, SHARC, TigerSHARC	
Equipment	Communications	Blackfin, SHARC, TigerSHARC	
	Measurement	Blackfin, SHARC, TigerSHARC	
Industrial	Data Acquisition	Blackfin, SHARC	
	Factory Automation	Blackfin	
	Industrial Control	Blackfin, SHARC, TigerSHARC	
	Machine Control	Blackfin	
	Metering	Blackfin	
	Motor Control	Blackfin	
	Network Management	Blackfin	
	Power Control	Blackfin	
	Robotics	Blackfin, SHARC, TigerSHARC	
	Verification and Biometrics	Blackfin	
	Video Surveillance Systems	Blackfin	
	Vision Systems	Blackfin	

UT

an S. Bruno

Recommended bibliography

- RG Lyons, Understanding Digital Signal Processing 2nd ed. Prentice Hall 2004.
 - Ch2: Periodic Sampling
- SW Smith, The Scientist and Engineer's guide to DSP. California Tech. Pub. 1997.
 - Ch1: The Breadth and Depth of DSP
 - Ch3: ADC and DAC
- SM Kuo, BH Lee. Real-Time Digital Signal Processing 2nd ed. John Wiley and Sons. 2006
 - Ch1:Introduction to Real-Time Digital Signal Processing
- NOTE: Many images used in this presentation were extracted from the recommended bibliography.

Л

Thank you!

Eng. Julian S. Bruno UTN-FRBA 2010

V