
 MATLAB on Athena (AC-71)

Table of Contents || Revision history || Copyright information

Getting Started
MATLAB (MATrix LABoratory) is an interactive program for scientific and engineering numeric
calculation. Applications include:

 matrix manipulation
 finding the roots of polynomials
 digital signal processing
 x-y and polar plotting
 3-dimensional graphics

This document assumes a fundamental working knowledge of matrix mathematics. If you are interested in
learning more about MATLAB but do not understand matrix mathematics, you may want to attend the
Athena minicourse which begins at a more basic level.

Starting a Session

Before using MATLAB for the first time, we recommend that you create a subdirectory in your home
directory named matlab. Use this directory for your personal MATLAB function files. See Creating
Your Own Functions and Scripts for details. Only once, before you ever use MATLAB at all, do the
following:

 athena% mkdir ~/matlab

More information on the mkdir command can be found in the Creating a Directory section of Working
on Athena.

To actually use MATLAB, do the following:

 athena% add matlab
 athena% matlab

You can also start the application from the Dash menubar. Select MATLAB on the Analysis and Plotting
submenu of the Numerical/Math menu.

A new xterm window pops up (you are prompted for its location and size in the usual manner), and all
appropriate environment variables are set in that window alone. The new xterm displays the MATLAB
header and >> prompt. A graphics window also pops up as MATLAB starts up, but then disappears almost
immediately; you have no control over this window and need not worry about its behavior. As you create
graphics, they appear in separate windows. The graphics windows usually appear on top of the MATLAB
xterm window and you will need to position the windows so that they don't overlap (this makes it easier to
use them together).

MATLAB lives in the matlab locker on Athena. The main program and all of the functions for MATLAB
are in specific subdirectories of the /mit/matlab directory. This locker is automatically attached whenever

you execute add matlab unless it has already been attached during your login session.

When you are finished using MATLAB, type exit at the >> prompt; any graphics windows disappear and
the athena% system prompt returns in the xterm from which you started MATLAB. Typing exit at the
athena% prompt makes this xterm go away.

Matlab 6 introduced the Matlab Desktop, a graphical interface with additional tools; because it runs more
slowly than the traditonal command-line interface, it is not currently on by default but you can use it by
typing desktop at the MATLAB prompt, or start MATLAB by typing matlab -desktop.

Running a MATLAB Demo

If you've never seen MATLAB in action before, type demo at the MATLAB >> prompt:

 >> demo

This puts you into the MATLAB demo window. At the bottom left is a "Close" button, which closes the
demonstration window. At the top, the menu bar has File, Window, and Help options. The File window
allows you to open and close files, create new files, print demonstrations, and perform other file-related
functions. Window allows you to switch between demo windows; Help uses Netscape to access
MATLAB's graphical help capabilities.

A list of topics which have demonstrations will appear in the left-hand window; information on these
topics appears in the upper right-hand window. In order to expand a topic in the left window, double-click
on it and subtopics will appear below. When you click on one of these, a list of possible demonstrations to
run in the lower right-hand window will appear. At this point, the button below this window changes to
"Run (demonstration name)". Click on this to run the demonstration.

More Help With MATLAB

Online Help

MATLAB has a good built-in help facility, both from the command line as described below and through a
graphical "Help Desk" which includes a full documentation set in Adobe Acrobat (PDF) format, a
searchable command index, and some toolbox-specific help. To start the Help Desk, type helpdesk at your
MATLAB prompt.

To use command line help, you may first want to type more on at your MATLAB prompt. This will cause
MATLAB to pause between each screen of text. Therefore, you can control your reading, rather than
having the entire file scroll by. (Use the space bar to advance a page, RETURN to advance a line, "q" to
exit from the item being displayed. Type 'help more' for more details.)

Typing help with no arguments at the MATLAB >> prompt displays a list of all primary help topics along
with a short description for each one. Typing help directoryname displays a list of .m files in the directory,
along with a brief description of each one if one has been provided, while typing 'what directoryname'
displays all of the MATLAB-related files in a directory.

Typing help function displays the syntax for the function (i.e. what arguments it expects) and a short
description of what that function does. For example, if you type help help at the MATLAB prompt, it will

give you documentation on the help function.

If you think you are doing everything right, but MATLAB disagrees, try looking at help for the functions
you are using. It may also be useful to verify the source of a function by typing 'which function -all'; this
behaves similarly to the where command in UNIX, telling you what directory the function is located in.

If you don't know a function's name, you can try to find it using the 'lookfor' command (or the search
feature in the Help Desk). This does a keyword search on the first comment line of each M-file accessible
to MATLAB, and may take some time to finish. (The switch "-all" can be used to search through the entire
first comment block, but this will lengthen the search.) For example:

 >> lookfor cartesian

returns

 CART2POL Transform Cartesian to polar coordinates.
 CART2SPH Transform Cartesian to spherical coordinates.
 POL2CART Transform polar to Cartesian coordinates.
 SPH2CART Transform spherical to Cartesian coordinates.

When you write your own functions, you can also include help information for them. This can be very
useful for other people using your function, or for your own use if you haven't used the function for a
while. For more information on how to include help information for your own functions, see the section
Creating Your Own Functions.

Hardcopy Documentation

This document only discusses a portion of the complete capabilities of MATLAB. If you don't see
something here, it doesn't mean MATLAB can't do it. If you have questions about MATLAB's
capabilities, or need further help with using it, we recommend that you refer to the following MATLAB
vendor documentation:

 Using MATLAB
 Using MATLAB Graphics

Complete documentation sets, including the MATLAB New Features Guide, MATLAB Release Notes,
and the SIMULINK User's Guide, are available for reference in Barker and Hayden Libraries, and in the
Athena Consulting Office in the basement of the Student Center (W20).

You may purchase your own copies of the documention from the vendor; contact:

 The MathWorks, Inc.
 24 Prime Parkway
 Natick, MA 01760
 (508) 653-1415
 FAX: (508) 653-2997
 E-mail: info@mathworks.com

Various MATLAB Toolbox Guides are also available from the vendor. If you are purchasing copies of the
documentation on an MIT Purchase Order, reference our MATLAB site license number, 3021.

Matrix/Vector Operations

Creating and Working with Matrices

The most straightforward way to initialize a matrix is to type a command of the form:

 variable = [value1-1 value1-2 value1-3 ... ;
 value2-1 value2-2 ...]

where each value may be rational or complex numbers. Within the square brackets that are used to form
vectors and matrices, you can use a semicolon to end a row. For example:

 >> x = [1 2 3 4; 0 9 3 8]
 x =
 1 2 3 4
 0 9 3 8
 >>

(Note: You can also use the semicolon after an expression or statement to suppress printing or to separate
statements.)

To use complex numbers, enter them in the form a+bi, without spaces. You can also initialize matrices
with these:

 >> x = [4+5i 2 4; 1 3+i 7]
 x =
 4.0000 + 5.0000i 2.0000 4.0000
 1.0000 3.0000 + 1.0000i 7.0000

Vectors and scalars are initialized the same way as matrices. It is important to note that MATLAB indexes
matrices in the following manner:

 (1,1) (1,2) (1,3) (1,4)
 (2,1) (2,2) (2,3) (2,4)

This means that the first element always has index (1,1), not (0,0).

If x is already defined as a vector of the form [val1 val2 val3 val4...] then you can define a new variable as
a subset of x by using the index of the specific value in vector x. For example, if x is defined as [2 4 1 7],
then:

 >> z = x(3)
 z =
 1

You can specify a value in matrix y the same way:

 >> y = [1 2 3 4 5; 3 4 5 6 7]
 y =
 1 2 3 4 5
 3 4 5 6 7

 >> z = y(2,1)
 z =
 3

You can also specify a range of numbers in a defined vector or matrix using the colon operator. Colon
notation is used to specify a range of numbers, or to access selected elements of a matrix. J:K steps from J
to K in increments of 1. For example:

 >> z = (1:5)
 z =
 1 2 3 4 5

J:D:K steps from J to K in increments of D. For example:

 >> z = (1:3:7)
 z =
 1 4 7
 >> z = (14:-2:5)
 z =
 14 12 10 8 6

MATLAB has a variety of built-in functions to make it easier for you to construct matrices without having
to enumerate all the elements. (The following examples show both vectors and matrices.)

The ones function creates a matrix whose elements are all ones. Typing ones(m,n) creates an m row by n
column matrix of ones. To create a ones matrix that is the same size as an existing matric, you can use
ones(size(X)). This does not affect the input argument. For example (this definition of x applies to
subsequent examples in this section):

 >> x = [1 2 3 4; 0 9 3 8]
 x =
 1 2 3 4
 0 9 3 8

 >> y = ones(size(x))
 y =
 1 1 1 1
 1 1 1 1

The zeros function is similar to the ones function. Typing zeros(m,n) creates an m-by-n matrix of zeros,
and zeros(size(x)) will create a two-by-four matrix of zeros, if x is defined the same way as above.

The max and min functions return the largest and smallest values in a vector. For example (this definition
of z applies to the following series of examples):

 >> z = [1 2 -9 3 -3 -5]
 z =
 1 2 -9 3 -3 -5

 >> max(z)
 ans =
 3

If called with a matrix as its argument, max returns a row vector in which each element is the maximum
value of each column of the input matrix. The max function can also return a second value: the index of
the maximum value in the vector or row of the maximum value down a column. To get this, assign the
result of the call to max to a two element vector instead of just a single variable.

For example:

 >> [a b] = max(z)
 a =
 3
 b =
 4
 >> [a b] = max (x)
 a =
 1 9 3 8
 b =
 1 2 1 2

where a is the maximum value of the vector and b is the index of that value. The MATLAB function min
is exactly parallel to max:

 >> min(z)
 ans =
 -9

sum and prod are two more useful functions for matrices. If z is a vector, sum(z) is the sum of all the
elements of the vector z:

 >> sum(z)
 ans =
 -11

For matrices, sum sums the columns. Note that the semicolon following the statement suppresses the
output. For example:

 >> w = magic(3);
 >> w

 w =

 8 1 6
 3 5 7
 4 9 2

 >> sum(w)

 ans =

 15 15 15

 >> sum(sum(w))

 ans =

 45

Similarly, prod(z) is the product of all the elements of z.

 >> prod(z)
 ans =
 -810

For matrices, prod(y) takes the product down the columns.

 >> prod(w)
 ans =
 96 45 84

Often, it is useful to define a vector as a subunit of a previously defined vector. To do this, you can use the
colon operator. For example, using the z defined above,

 >> z
 z =
 1 2 -9 3 -3 -5

 >> y = z(2:5)
 y =
 2 -9 3 -3

where (2:5) represents the sequence of index values to be taken from the larger vector.

You can use subarrays in MATLAB, as well. A(J,:) specifies the Jth row of the matrix A. A(:,K) specifies
the Kth column of the matrix A. Combining these, A(J-range,K-range) specifies a submatrix. So, you
could specify a subset of y using the colon:

 >> y = [1 2 3 4 5; 3 4 5 6 7]
 y =
 1 2 3 4 5
 3 4 5 6 7
 >> z = y(1:2,2:3)
 z =
 2 3
 4 5

The size function returns a two-element vector giving the dimensions of the matrix with which it was
called. For example:

 >> x = [1 2 3 4; 0 9 3 8]
 x =
 1 2 3 4
 0 9 3 8

 >> y = size(x)
 y =
 2 4

You can also define the result to be two separate values (as shown in the max example):

 >> [m n] = size(x)
 m =
 2
 n =
 4

The length operator returns the length of a vector. If z is defined as in the above examples,

 >> length(x)
 ans =
 4

For matrices, length is the length or the width, whichever is greater, i.e., length(x) is equivalent to max
(size(x)).

Basic Arithmetic

MATLAB uses a straight-forward notation for basic scalar arithmetic. The following table summarizes
simple MATLAB notation:

 + addition
 - subtraction
 * multiplication
 / division
 ^ exponentiation

All of these work for two scalars, including complex scalars. You can also add, subtract, multiply or divide
all the elements of a vector or matrix by a scalar. For example, if x is a matrix or vector, then x+1 adds one
to each element x, and x/2 divides each element of x by 2. x^2 does not square each element of x, but x.^2
does. Matrix and vector exponentiation are discussed later.

The special operator ' (prime or apostrophe) takes the transposition of a matrix. For example:

 >> a = [1 2 3]

 a =

 1 2 3

 >> a'

 ans =

 1
 2
 3

For a matrix with complex entries, this takes the complex conjugate transpose. To take the transpose
without the conjugate, use .'.

 >> b = [1 2 3] + i*[-4 3 2]

 1.0000 - 4.0000i 2.0000 + 3.0000i 3.0000 + 2.0000i

 >> b'

 ans =
 1.0000 + 4.0000i
 2.0000 - 3.0000i
 3.0000 - 2.0000i

 >> b.'

 ans =
 1.0000i - 4.0000i
 2.0000 + 3.0000i
 3.0000 + 2.0000i

Element-Wise Operations

You often may want to perform an operation on each element of a vector while doing a computation. For
example, you may want to add two vectors by adding all of the corresponding elements. The addition (+)
and subtraction (-) operators are defined to work on matrices as well as scalars. For example, if x = [1 2 3]
and y = [5 6 2], then

 >> w = x+y
 w =
 6 8 5

Multiplying two matrices element by element is a little different. The * symbol is defined as matrix
multiplication when used on two matrices. Use .* to specify element-wise multiplication. So, using the x
and y from above,

 >> w = x .* y
 w =
 5 12 6

You can perform exponentiation on a vector similarly. Typing x .^ 2 squares each element of x.

 >> w = x .^ 2
 w =

 1 4 9

Finally, you cannot use / to divide two matrices element-wise, since / and \ are reserved for left and right
matrix ``division.'' Instead, you must use the ./ function. For example:

 >> w = y ./ x
 w =
 5.0000 3.0000 0.6667

The abs operator returns the magnitude of its argument. If applied to a vector, it returns a vector of the
magnitudes of the elements. For example, if x = [2 -4 3-4i -3i]:

 >> y = abs(x)
 y =
 2 4 5 3

The angle operator returns the phase angle (i.e., the "argument") of its operand in radians. The angle
operator can also work element-wise across a vector. For example:

 >> phase = angle(x)
 phase=
 0 -3.1416 -0.9273 -1.5708

The sqrt function computes the square root of its argument. If its argument is a matrix or vector, it
computes the square root of each element. For example:

 >> x = [4 -9 i 2-2i];
 >> y = sqrt(x)
 y =
 2.0000 0 + 3.0000i 0.7071 + 0.7071i 1.5538 - 0.6436i

MATLAB also has operators for taking the real part, imaginary part, or complex conjugate of a complex
number. These functions are real, imag and conj, respectively. They are defined to work element-wise on
any matrix or vector.

MATLAB has several operators that round fractional numbers to integers. The round function rounds its
elements to the nearest integer. The fix function rounds its elements to the nearest integer towards zero,
e.g. rounds ``down'' for positive numbers, and ``up'' for negative numbers. The floor function rounds its
elements to the nearest integer towards negative infinity, e.g. ``down.'' The ceil (short for ceiling) function
rounds its elements to the nearest integer towards positive infinity, e.g. ``up.''

All of these commands are defined to work element-wise on matrices and vectors. If you apply one of
them to a complex number, it will round both the real and imaginary part in the manner indicated. For
example:

 >> ceil(3.1+2.4i)
 ans=
 4.0000 + 3.0000i

MATLAB can also calculate the remainder of an integer division operation. If x = y * n + r, where n is an
integer and r is less than n but is not negative, then rem(x,y) is r. For example:

round rounds to nearest integer

fix rounds to nearest integer towards zero

floor rounds down (towards negative infinity)

ceil rounds up (towards positive infinity)

 >> x = [8 5 11];
 >> y = [6 5 3];
 >> r = rem(x,y)
 r=
 2 0 2

The standard trigonometric operations are all defined as element-wise operators. The operators sin, cos
and tan calculate the sine, cosine and tangent of their arguments. The arguments to these functions are
angles in radians. For example:

 >> sin (pi/2)
 ans =
 1

Note that the functions are also defined on complex arguments. For example, cos(x+iy) = cos(x)cosh(y) - i
sin(x)sinh(y). The inverse trig functions (acos, asin and atan) are also defined to operate element-wise
across matrices. Again, these are defined on complex numbers, which can lead to problems for the
incautious user. The arctangent is defined to return angles between pi/2 and -pi/2.

In addition to the primary interval arctangent discussed above, MATLAB has a full four-quadrant
arctangent operator, atan2. atan2(y,x) returns the angle between -pi and pi whose tangent is the real part
of y/x. If x and y are vectors, atan2(y,x) divides y by x element-wise, then returns a vector in which each
element is the four-quadrant arctangent of corresponding element of the y/x vector.

MATLAB also includes functions for exponentials and logarithms. The exp operator computes e to the
power of its argument. This works element-wise, and on complex numbers. The pi function returns the
floating point number nearest the value of pi. So, to generate the complex exponential with a frequency of
pi/4, we could type:

 >> n = 0:7;
 >> s = exp(i*(pi/4)*n)
 s =

 Columns 1 through 4
 1.0000 0.7071 + 0.7071i 0.0000 + 1.0000i -0.7071 + 0.7071i

 Columns 5 through 8
 -1.0000 + 0.0000i -0.7071 - 0.7071i -0.0000 - 1.0000i 0.7071 - 0.7071i

MATLAB also has natural and base-10 logarithms. The log function calculates natural logs, and log10
calculates base-10 logs. Both operate element-wise for vectors. Both are defined for complex values.

Logical Operations

MATLAB allows you to perform boolean operations on vectors element-wise. For the purpose of boolean
algebra, MATLAB regards any non-zero real element as true, and zero as false. MATLAB uses & for the
boolean and operator, | for or, and ~ for not. For example:

 >> x = [1 0 2 4] & [0 0 1 i]
 x =
 0 0 1 1
 >> x = [1 0 2 4] | [0 0 1 i]
 x =
 1 0 1 1

In addition, you can run a cumulative boolean "or" or boolean "and" across all the elements of a matrix or
vector. If v is a vector or matrix, any(v) returns true if any element of v is non-zero; all(v) returns true if all

the elements of v are non-zero.

You can also compare two vectors element-wise with any of six basic relational operators:

For example:

 >> x = [1 2 3 4 5] <= [5 4 3 2 1]
 x =
 1 1 1 0 0

Relational operators are particularly important in programming control structures.

Control Structures

MATLAB includes several control structures to allow you to write programs. The for command allows
you to make a command or series of commands be executed several times. It is functionally very similar to
the for function in C. (Be careful not to use the variable i for an index; else, you may inadvertantly
redefine sqrt(-1).) For example, typing

 for s = 1:4
 s
 end

causes MATLAB to make the variable s count from 1 to 4, and print its value for each step (the
indentations in the for structure are optional). From the above example, MATLAB would return:

 s =
 1
 s =
 2
 s =
 3
 s =
 4

Every for command must have a matching end statement to indicate which commands should be executed
several times. You can have nested for loops. For example:

 for m = 1:3
 for n = 1:3
 x (m,n) = m + n*i;
 end
 end

defines x to be the matrix:

 x =

< less than

> greater than

== equal to

~= not equal to

<= less than or equal to

>= greater than or equal to

 1.0000 + 1.0000i 1.0000 + 2.0000i 1.0000 + 3.0000i
 2.0000 + 1.0000i 2.0000 + 2.0000i 2.0000 + 3.0000i
 3.0000 + 1.0000i 3.0000 + 2.0000i 3.0000 + 3.0000i

(This is yet another way to define a matrix.)

The if command lets you have programs that make decisions about what commands to execute. The basic
command looks like:

 if a > 0
 x = a^2;
 end

This command assigns x to be the value of "a" squared, if a is positive. Note that it has to have an end to
indicate which commands are actually part of the if. In addition, you can define an else clause which is
executed if the condition you gave the if is not true. The example above might be expanded thus:

 if a > 0
 x = a^2;
 else
 x = - a^2;
 end

For this version, if you had already set a to be 2, then x would get the value 4, but if a was -3, x would be -
9. Note that you only need one end, which comes after all the clauses of the if. Finally, you can expand the
if to include several possible conditions. If the first condition isn't satisfied, it looks for the next, and so on,
until it either finds an else, or finds the end. For example:

 if a > 0
 x = a^2;
 elseif a == 0,
 x = i;
 else
 x = - a^2;
 end

This command checks whether a is positive: if a is not positive, it checks whether a is zero; if a is not
zero, it does the else clause. Thus, if a is positive, x well be a squared, if a is 0, x will be i, and if a is
negative, then x will be the negative of a squared.

The third major control structure is the while command. The while command allows you to execute a
group of commands until some condition is no longer true. These commands appear between the while and
its matching end statement. For example, if you want to start x at 2 and keep squaring x until it is greater
than one million, you would type:

 x = 2
 while x < 1000000
 x = x^2;
 end

This runs until x is 4.2950e+09. Everything between the while line and the end is executed until the
boolean condition on the while line is no longer true. You have to make sure this condition will eventually
stop being true, or the command will never finish. If it is not initially true, no commands will be executed.

The pause and keyboard commands can be useful in functions that you write yourself. The pause
command causes MATLAB to wait for a key to be pressed before continuing. The keyboard command
passes control to the keyboard, indicated by a the prompt K>>. You can examine or change variables, or
issue any MATLAB command. Terminate keyboard mode by executing the command return at the K>>
prompt.

Sometimes you will want to terminate a for or while loop early. You can use the break command to jump
out of a for or while command. For example, you could rewrite the while example above using break:

 while 1
 if x > 1000000
 break;
 end
 x = x^2;
 end

Selective Indexing

Sometimes, you only want to perform an operation on certain elements of a vector, such as all the elements
of the vector that are less than 0. One way to do this is a for loop that checks to see whether each element
is less than zero, and if so, does the appropriate function. However, MATLAB includes another way to do
this. If you say

 >> x(x<0) = - x(x<0)

MATLAB changes all the negative elements of the vector x to be positive. The following sequence of
commands illustrates this:

 >> x = [-3 -2 0 2 4]
 x =
 -3 -2 0 2 4
 >> x(x<0) = - x(x<0)
 x =
 3 2 0 2 4

Though this notation can be more confusing than a for loop, MATLAB is written such that this operation
executes much, much faster than the equivalent for loop.

You can also perform operations on a vector conditionally based upon the value of the corresponding
element of another vector. For example, if you want to divide two vectors element-wise, you have to worry
about what happens if the denominator vector includes zeros. One way to deal with this is shown below.

 >> x = [3 2 0 2 4]
 x =
 3 2 0 2 4
 >> y = [1 1 1 1 1]
 y =
 1 1 1 1 1
 >> q = zeros(1,length(y))
 q =
 0 0 0 0 0
 >> q(x~=0) = y(x~=0) ./ x(x~=0)
 q =
 0.3333 0.5000 0 0.5000 0.2500

You can perform this type of conditional indexing with any boolean operator discussed earlier, or even
with boolean operators on the results of functions on elements of vectors. For example:

 >> q((x<=3) & (q<=0.4)) = q((x<=3) & (q<=0.4)) + 14
 q =
 14.3333 0.5000 14.0000 0.5000 0.2500

Polynomial Operations

Vectors can also be used to represent polynomials. If you want to represent an Nth-order polynomial, you
use a length N+1 vector where the elements are the coefficients of the polynomial arranged in descending
order of exponent. So, to define y = x^2 - 5x + 6, you would type:

 >> y = [1 -5 6];

The MATLAB roots function calculates the roots of a polynomial for you. If y is defined as above:

 >> roots(y)
 ans =
 3
 2

MATLAB also has the poly function, which takes a vector and returns the polynomial whose roots are the
elements of that vector.

You can multiply two polynomials using the conv function. The convolution of the coefficient vectors is
equivalent to multiplying the polynomials. For example, if we define w = 3x^2 - 4x -1 (so the vector w =
[3 -4 -1]) and use the y given above:

 >> z = conv(w,y)
 z =

 3 -19 37 -19 -6

The polyval function returns the value of a polynomial at a specific point. For example:

 >> polyval(y,1)
 ans =

 2

The polyval function also works element-wise across a vector of points, returning the vector where each
element is the value of the polynomial at the corresponding element of the input vector.

Signal Processing Functions

MATLAB comes with several useful signal processing functions. Type help signal for a list of functions,
and then see the help for the individual function such as help fft, help filter, or help freqz.

Libraries and Search Paths

MATLAB has several libraries that contain files of functions called M-files. An M-file consists of a
sequence of MATLAB statements (see Creating Your Own Functions). To see the complete list of
toolboxes (libraries), type the command path at the MATLAB >> prompt. For a description of a toolbox,
type help toolboxname or what toolboxname at your prompt. To see the text of an M-file, type type
filename.

The list you get with the path command is also MATLAB's current directory search path. MATLAB's
search rules are as follows; when you enter a name, MATLAB:

1. looks to see if the name is a variable.
2. looks for it as a built-in function.
3. searches in the current directory for the related .m file.
4. searches the directories specified by path for the .m file.

You can also use path, with appropriate arguments, to add or change directories in the search path. For
details, type help path at the MATLAB >> prompt, or see path in the MATLAB Reference Guide.

Graphics
MATLAB supports several commands that allow you to display results of your computations graphically.
Graphs are displayed in a graphics window that MATLAB creates when you give one of the plotting
commands. The default graphics window starts up with a black background. To change this, type the
command whitebg at the MATLAB >> prompt.

The following are some of the large number of new plot types that have been added to MATLAB 4.0:

 3-D shaded color surface graphs
 3-D contour plots
 3-D line trajectories
 3-D volumetric "slice" plots
 3-D axes on mesh and surface plots
 Combination surface and contour plots
 Image display
 Lighting and rendering models

Plotting Individual Graphs

The plot command is the simplest way of graphing data. If x is a vector, plot(x) will plot the elements of x
against their indices. The adjacent values of x will be connected by lines. For example, to plot the discrete-
time sequence that is a sinusoid of frequency pi/6, you would type:

 >> n = 0:11;
 >> y = sin((pi/6)*n);
 >> plot(n,y)

When plot gets two vectors for arguments, it creates a graph with the first argument as the abscissa values,
and the second vector as ordinate values. In the example above, plot will use the values of y for the y-axis,
and the values of n for the x-axis. If you typed:

 >> plot(y)

MATLAB would use the values of y for the y-axis and their indices for the x-axis. Notice that the first
value graphed would have an abscissa value of one, and not zero. This is because MATLAB indexes
vector elements beginning with one, not zero.

You can also change the type of line used to connect the points by including a third argument specifying
line type. The format for this is plot(x,y,line-type). The line types available are:

 '-' solid line (default)
 '--' dashed line

 ':' dotted line
 '-.' line of alternating dots and dashes

Whichever character you chose to use must be enclosed by single quotes. For example, plot(n,y,':') would
create the same graph as above, except that the points would be connected by a dotted line. The default
line type is solid. In this case, it is misleading to connect the adjacent values by lines, since this is a graph
of a discrete-time sequence. Instead, we should just put a mark to indicate each sample value. We can do
this by using a different set of characters in place of the line-type argument. If we use a '.', each sample is
marked by a point. Using a '+' marks each sample with a + sign, '*' uses stars, 'o' uses circles, and 'x' uses
x's. For example, the following command plots the values of y against their indices, marking each sample
with a circle:

 >> plot(n,y,'o')

You can also plot several graphs on the same axis. For example, the following command plots y1 versus
x1 and y2 versus x2 on the same axis using different line types for each graph:

 plot(x1,y1,x2,y2)

You can also include a specific line or point type (from the list above) for each graph:

 plot(x1,y1,'line-type1',x2,y2,'line-type2')

You can also create plots with either or both axes changed to log-scale. All of these functions follow the
same conventions for arguments and line or point types as plot:

 --
 Command X-Axis Scale Y-Axis Scale
 --
 loglog logarithmic logarithmic

 semilogy linear logarithmic

 semilogx logarithmic linear
 --

You can use additional MATLAB commands to title your graphs or put text labels on your axes. For
example, the following command labels the current graph at the top with the text enclosed in single quotes:

 >> title('MATLAB Graph #1')

Similarly, the following commands label the x- and y-axes:

 >> xlabel('This is the x-axis')
 >> ylabel('This is the y-axis')

The axis command is used to control the limits and scaling of the current graph. Typing

 a = axis

will assign a four-element vector to a that sets the ``minimum ranges'' for the axes. The first element is the
minimum x-value, the second is the maximum x-value for the current graph. The third and fourth elements
are the minimum and maximum y-values, respectively. You can set the values of the axes by calling the
axis function with a four-element vector for an argument. You might want to do this, for example, if you
were going to plot several sets of data on the same graph and you knew that the range of one set of data
was significantly larger than the other.

The elements of the vector you use to set the values of the axes should be your choices for the x- and y-
axis limits, in the same order as specified above ([x-min x-max y-min y-max]). So, if you type

 >> axis([-10 10 -5 5])

you will rescale the axis in the graphics window so the x-axis goes at least from -10 to 10, and the y-axis
from -5 to 5. MATLAB tends to resize axes whenever it produces a plot; see help axis for other options.

The hold command will keep the current plot and axes even if you plot another graph. The new graph will
just be put on the current axes (as much as fits). Typing hold a second time will toggle the hold off again,
so the screen will clear and rescale for the next graph.

Aspect Ratio Control

As with many computers, MATLAB's graphing system is not perfectly scaled. MATLAB does allow you
to switch between a perfectly square aspect ratio and the normal aspect ratio. Typing axis('square') will
give you a truly square aspect ratio, while axis('normal') would flip you back to MATLAB's usual aspect
ratio.

Plotting Multiple Graphs

You can use the subplot command to split the screen into multiple windows, and then select one of the
sub-windows as active for the next graph. The subplot function can divide the graphics window into a
maximum of four quadrants; first the window splits horizontally, then it splits vertically. The format of the
command is:

 >> subplot(xyn)

or

 >> subplot(i>x,y,n)

.

In this command, x is the number of vertical divisions, y is the number of horizontal divisions, and n is the
window to select for the first plot. Both x and y must be less than or equal to two, and n must be less than
or equal to x times y. For example, subplot(121) will create two full-height, half-width windows for
graphs, and select the first, e.g. left, window as active for the first graph. After that, unless you specifically
indicate which window is active, MATLAB cycles through them with each successive plot. The order of
that cycling is as follows:

 |
 1 | 2
 ------+------
 3 | 4
 |

Typing subplot with no arguments returns the graphics window to its original, single-window state.

Output of Plots and Graphs

Sending Graphics to a Printer

You can use the print command to get a hard copy of the current graphics window:

 >> print -Pprintername

For example, the following command sends the current graph to the printer linus:

 >> print -Plinus

It may take a minute or two for MATLAB to send the graphics file to the printer. The MATLAB default is to
send printouts to PostScript printers. Other printer formats are supported; for details type help print at the
>> prompt.

The default orientation for printing MATLAB graphics is portrait (longest paper dimension is vertical).
Prior to issuing the print command, you can change the orientation with the orient commands, as follows:

 orient landscape - prints the current graphics window horizontally
 orient tall - prints the graphics window on the full page, in portrait orientation
 orient portrait - returns to the default orientation; the graphics window prints with an aspect ratio

of 4/3 in the middle of the page
 orient - by itself, returns a string with the current paper orientation

Sending Graphics to a File

MATLAB graphics can be saved to a file. MATLAB supports several device file formats, with PostScript
being the default. For details and the list of device options, type help print at the MATLAB prompt.

To save the current graphics window to a file, type the following command at the MATLAB prompt, where
device is one of the options listed in help print:

 >> print -ddevice filename

Creating Your Own Functions and Scripts

Creating Your Own Functions

You can create your own functions within MATLAB using M-files. An M-file is an ASCII text file that has a
filename ending with .m, such as stars.m. You can create and edit M-files with a text editor such as Emacs.
There are two classes of M-files, functions and scripts.

Function definitions are stored in files with the name function-name.m. The first line of a function
definition must start with the word function and can be of the form:

 function function-name(argument1, argument2,...)

This specifies the name of the function and its input arguments. For instance, the first line of a function
definition for stars from the M-file named stars.m would be function stars(t).

Functions Returning No Values

A common example of a function that doesn't return any value is one that draws a graph.

 function stars(t)
 %STARS(T) draws stars with parameter t
 n = t * 50;
 plot(rand(1,n), rand(1,n),'.');
 %that line plots n random points
 title('My God, Look at all the Stars!');
 %label the graph

When stars is executed, it will plot a random sprinkling of points in your graphics window on a set of axes.
The first line in the M-file defines this as a function named stars that takes one argument named t, and
doesn't return anything. The next line is the help comment. To include help info for your own functions,
just start the text line in the corresponding M-file with a %. Any comments preceded by a % and coming
immediately after the first line in the M-file are returned by the help command from within MATLAB. For
example:

 >> help stars
 STARS(T) draws stars with parameter t

A line of comments is also indicated by the % character. You can have as many of these as you want, just
remember that the help command only prints the ones immediately following the function definition at the
beginning of the M-file. Next, the function defines an internal variable named n to be fifty times t. This n is
totally unrelated to any variable already defined in the main MATLAB workspace. Assigning this value
will not alter any n you had already defined before calling the stars function. You can also see how we put
a comment in the middle of the function indicating which command actually drew the stars.

Sometimes, you will need to write several versions of a function before it works properly. When you modify
a function definition in an M-file (with Emacs), you must type:

 >> clear function-name

before running the modified function. If you don't, MATLAB won't look at the new version in the M-file
and will simply run the old version.

Functions Returning One Value

Functions may return scalar or matrix values. The first line of such functions are of the form:

 function variable = function-name(argument1,
 argument2,...)

where the variable will be set equal to the output value somewhere in the function definition. Here is an
example where y is set to equal the function fliplr.

 function y = fliplr(x)
 %FLIPLR(X) returns X with row preserved and columns flipped
 %in the left/right direction.

 % X = 1 2 3 becomes 3 2 1
 % 4 5 6 6 5 4

 [m,n] = size(x);
 y = x(:,n:-1:1);

Functions Returning More Than One Value

If you want to return more than one argument, you can do it by having the function return a vector of
values. For example, the following function returns two vectors. The first vector is the prime factors less
than 10 of the argument. The second indicates how many times each of these factors is used.

 function [factors, times] = primefact(n)
 %[FACTORS TIMES] = PRIMEFACT(N) find prime factors of n

 primes = [2 3 5 7];

 for i = 1:4
 temp = n;
 if (rem(temp,primes(i)) == 0)
 factors = [factors primes(i)];
 times = [times 0];
 while (rem(temp,primes(i)) == 0)
 temp = temp/primes(i);
 times(length(times)) = times(length(times))+1;
 end
 end
 end

If you call this function with just one argument (for example, a = primefact(10)) the function returns a
vector of prime factors, but not the vector indicating how many times each factor appears in the number.
To get both vectors, you would call the function as follows:

 >> [a b] = primefact(180)
 a =
 2 3 5
 b =
 2 2 1

This way, both vectors are returned: the primes in a, and the number of times each prime was used in b.
From these results, you can see that 180=2*2*3*3*5.

Functions Taking a Variable Number of Arguments

Anytime you call a function, MATLAB defines a variable inside that function called nargin. nargin is the
number of arguments with which the function was called. This allows you to write functions that behave
differently when called with different numbers of arguments. If you specify the function rhino such that the
first line of its M-file file reads:

 function hippo = rhino(a,b,c,d)

MATLAB will allow you to call rhino with only two arguments, and treat your call to the program as if the
last two arguments were optional, and not used. MATLAB sets nargin = 2, and executes the function. If the
function tries to do something using the variables c or d, MATLAB generates an error message. MATLAB
assumes you will use nargin to avoid referring to any optional arguments that were not supplied.

Script M-files

A script M-file is simply a file of MATLAB commands as you would type them at the >> prompt. A script
does not begin with a function line. Its contents are executed in sequence whenever you type their name.

This also differs from a function M-file in that there are no arguments or output values. Also, the variables
inside a script file are the same ones as in the main MATLAB workspace. If you type n = 1000, then
execute a script that ends with the line n = 2, n would then be 2, and not 1000. To create a script file, just
create a file (e.g. with Emacs) that contains the commands you want executed, and save it in ~/matlab. A
script file does not need comments for the help command. The filename should still end in .m.

Scripts are modified the same way functions are. Remember to type

 clear script-name

before running a modified script, or MATLAB will run the old version.

Saving Your Work
MATLAB's diary command records your session in a transcript file that you specify. Typing diary
filename starts recording all the commands you type in filename, including "most of the resulting
output" (according to the MATLAB manual). Graphs are not recorded, but almost all printed results are.
Typing diary off turns the transcript off, and diary on turns it back on. The file is created in ASCII format,
suitable for editing with Emacs and including in other reports. In fact, this function was used to generate
almost all the examples in this document.

If you want to save all your variables and their current values, type:

 >> save filename

before you exit MATLAB, and your work will be saved in a binary file named filename.mat. The default file
name is matlab.mat in your current working directory; type cd ~/matlab at your MATLAB prompt to get to
your home MATLAB directory. If you only want to save some of the variables, you can give the save
command the names of the variables to save. If you type:

 >> save filename x y

MATLAB will save just the variables x and y in the file filename.mat.

When you start up MATLAB at some future time, you can restore all your variables from the file
filename.mat by typing:

 >> load filename

The command load, by itself, loads all the variables saved in matlab.mat.

A file with the extension .mat is assumed to be binary MATLAB format. To retrieve the variables from
filename.mat, the command is:

 load filename

See help save or help load for information on formats, including the ASCII text format.

Interface Controls

Controlling the MATLAB Session

The following table briefly describes the interface controls available to you when using MATLAB:

MATLAB allows you to clear either the command (text) window, or the graphics window. The clc
command clears the command window, and give you a fresh >> prompt. The clf command clears the
graphics window and leaves it blank.

The who command displays the names of all your variables. The whos command gives you the names of all
the variables, along with information about each variable's size, number of elements, number of bytes,
density, and whether the variable is complex. For example:

 >> whos
 Name Size Elements Bytes Density Complex

 A 3 by 3 9 72 Full No
 B 3 by 3 9 72 Full No
 C 3 by 3 9 72 Full No
 I 3 by 3 9 72 Full No
 X 3 by 3 9 72 Full No
 a 1 by 9 9 72 Full No
 ans 3 by 1 3 24 Full No
 b 1 by 9 9 72 Full No
 p 1 by 4 4 32 Full No
 q 1 by 7 7 56 Full No
 r 1 by 10 10 80 Full No
 Grand total is 87 elements using 696 byte

You can also run the whos command on a sparse matrix, producing output as in the following example:

 >> whos
 Name Size Elements Bytes Density Complex

 A 4253 by 4253 28831 362984 0.0016 No

If you run the who command and see that you have variables you are no longer using, use the clear
command to remove obsolete variables. For example, typing clear z would delete the variable z.

Working With the Operating System

MATLAB also defines some basic file manipulation utilities, to work with the operating system without
having to quit and restart MATLAB:

clc clear the command window

clear(x) clear variable x

clf clear the graphics window

diary record transcript of session (specify a filename)

load load previously saved workspace or session

save save current workspace or session

who list defined variables

whos list defined variable with additional information

 cd change directory (same as chdir)
 delete delete file (same as rm)
 dir list (same as ls)
 ls list (same as dir)
 type display contents of a file (same as cat)
 unix execute operating system command and return result to MATLAB
 ! precedes operating system command called within MATLAB

The command unix can be used to execute any operating system command and return the result to
MATLAB. For example:

 >> [s,date] = unix('date')

 s =

 0

 date =

 Wed Oct 27 11:05:12 EDT 1993

You can use any regular Unix command by preceding it by a !. Thus, typing !date gives you the current
date and time. All pathnames and wildcards should work just as they do at your athena% prompt.

Modeling Dynamic Systems (SIMULINK)
SIMULINK is a toolbox for the nonlinear simulation of dynamic systems, using a mouse-driven, block-
diagram interface. It is an extension to the standard MATLAB, using Motif to create a number of new
windows.

SIMULINK lets you create and edit block-diagram representations of dynamic systems. The model can
then be analyzed either through Menu commands or from the MATLAB command line. Results from the
analysis can be passed to the MATLAB workspace for further work.

To run SIMULINK, type:

 >> simulink

To run some SIMULINK demonstration programs, type:

 >> demo simulink

Regular MATLAB-style help is available for all SIMULINK functions, and the full MATLAB command set
is also available from inside SIMULINK.

The SIMULINK User's Guide is available for reference in Barker and Hayden Libraries, and in the
Athena Consulting Office in the basement of the Student Center (W20). You may also purchase a copy
from the vendor; see the section For More Help about MATLAB.

