Beej's Guide to Network Programming

Using Internet Sockets

Brian "Beej" Hall

beej@piratehaven.org

Copyright © 1995-2001 by Brian "Beej" Hall

Revision History

Revision Version 1.0.0 August, 1995 Revised by: beej

Initial version. _ _
Revision Version 1.5.5 January 13, 1999 Revised by: begj

Latest HTML version. _ _
Revision Version 2.0.0 March 6, 2001 Revised by: begj

Converted to DocBook XML, corrections, additions.
Revision Version 2.0.1 March 7, 2001 Revised by: beegj

Minor corrections. . .
Revision Version 2.0.2 March 16, 2001 Revised by: beegj

inet_ntoa() should have been inet_aton() in some places.

Revision Version 2.0.3 April 2, 2001 Revised by: beej

inet_aton() return values corrected, selectserver changed, typos fixed, added recvtimeout().

Revision Version 2.1.0 May 3, 2001 Revised by: beej

Fixed buffer overruns in client.c and listener.c, made server.c robustly reap zombies, added email policy.
Revision Version 2.2.0 June 24, 2001 Revised by: begj

Updates QnA, Windows, talker.c, PF_INET info, accept() demo, no more bzero()s, Solaris setsockopt().
Revision Version 2.2.1 June 25,2001 Revised by: begj

Minor QnA update, added Amazon affiliate stuff.

Revision Version 2.3.0 July 25, 2001 Revised by: beej

Added QnA entries, polished selectserver.c, added WSACleanup(), struct in_addr size clarification.

Table of Contents

TR 1 10 PSRRI

R O N U T [1= o o TSRS
2 o = Lx (o T g T= Vg o I OXo 0 g o1 1= U SUS 3
(IR @ 1o -1l o [o] g =T o=V L= SR UR USSR
1.4. Note for SolariS/SUNOS PrOgramMIMELScccoirerireriereeeeiesie st st steseeseesessessesaessessesesessessessessesessssssasesses 3
1.5. Note for WIiNAOWS PrOGraMMIEEIS.......c.ooirieriereeeeteetesiesteseeeeese sttt aesee e esessesaesaessese e ssessesbesbeseesesnsesesss
G =10 o T1 I o [Ty OSSR PR UUSRSOR 4
R A Y T4 o T o RS
1.8. NOLE TOF TIANSIALOLS......c.vcuireciieet ittt ettt n e e e e bt
1.9. Copyright and DiStrDULIQN...........coviieie et s te st e ene et e eneennas

2.1. TWO TyPES Of INTEINEL SOCKELS.....ccueiieeeeciices s et e e b besee s aeneenenns
2.2. Low level Nonsense and NetWOrk THEQIY........cociriiiiicieseecee ettt s 7

3.1, CONVEIE the NALIVES!. ...ttt s e e s eesbe s te st e e eneesesaesee e e s eneeneens 9
3.2. IP Addresses and How to Deal With Them... ... s 10
4. SYSTEIM CAIIS OF BUST......eiiteiiteeiteie ettt b et b et b et bt bt a bt e b st b et b et e b et e bt b s e b e b 12
4.1.socket() —Getthe File DESCHPLOLL. ..o e bbb 12
4.2.bind() —What POt @M | ON2...ic et b e bbb e e et e e ae bt esbe e e e ne 13
4.3.c0NNECH)) —HEBY, YOUL. ...ttt et b e h et b e e e e e e e aeenne e 14
4.4.listen() —Will somebody please Call ME2...........c e 15
4.5.accept() —"Thank you for calling port 3490.".........cor e e 16
4.6.send() andrecv() —Talkto Me, DAYl ..o s 17
4.7.sendto() andrecvfrom() —Talk to Me, DGRAM-SYIE........ccoiiiieiieecce e 18
4.8.close() andshutdown() —Getoutta My faCel........cccooieiiiiiie i 19
4.9.getpeername() —WHO @r€ YOUZ......cuiii ettt e st s s e e e re et e s ne e e e seenneenee e 20
4.10.gethostname() —WHO @M 12, ettt e e e et e e saeesare e be e saeesaneenbeens 20
4.11. DNS—You say "whitehouse.gov", | say "198.137.240.92"..........cccceoenrerrerireeree e 20
5. Client-Server BACKGIOUNG.......c..ccveiiiiriieseeeeise st st e e e e et st teste e esa e s sesseste e se e ese et estesaesaensanensessesaestensesennenns 22
5.1, A SIMPIE SIIEAM SEIVEL.....cueiuicieseseeeeeeti st te s ettt se e e ese st e aesee e enee e e sesaestesteseeneeneesensesaensensenennen 23
LI N 1101 0] (TS (=T U g 14 1= o | 25
5.3, DALAGIAM SOCKELS.....cuiiiieiiiieieriete ettt sttt sttt sttt st st s b et b e e bt b st e e bt e be et 26
6. Slightly AVANCEA TECNNIQUES.......c.citiirieiiietiietee ettt et sttt 29
G N = (o Tt (] o OO SOT ST 29
6.2.select() —SyNchronous /O MUIIPIEXING ..o e 30
RS I o oY gL | T o = T = 1Y o o [RSSO 35
6.4. SoN Of Data ENCAPSUIALIAN..........ciiiiiiiiiiee bbb 36
A\ (o (oI R U] (T (=] LT PSS 38
7. L MNAN PAOES.. .ttt ettt ettt et et ae et e s he s ae e beeh e e e e ebe £ ae e eEe e Re e EeeE e eR e e Rt ehe e Rt SRt eaeenheeRe e beeReetesaeeaneneens 38
2 = o Lo USRS 39
7.3 WED RETEIENCES ...ttt bt a e e b b e se et e a e e bt e bt sb et et et e neebesbeseeseeeennas 40
A S OSSOSO 40
ST @0 a1 010 @ TUT=T] 1 o] o 40

9. Disclaimer and Call fOr HEIPueoeeeeeee ettt s e s a et be e e e teeneestesneentenreennennas 45

1. Intro

Hey! Socket programming got you down? Is this stuff just a little too difficult to figure out fronmidnie pages? You
want to do cool Internet programming, but you don’t have time to wade through a gola@f s trying to figure
out if you have to calbind() before youconnect() , etc., etc.

Well, guess what! I've already done this nasty business, and I'm dying to share the information with everyone!
You've come to the right place. This document should give the average competent C programmer the edge s/he needs
to get a grip on this networking noise.

1.1. Audience

This document has been written as a tutorial, not a reference. It is probably at its best when read by individuals who
are just starting out with socket programming and are looking for a foothold. It is certainly noaiti@eteguide to
sockets programming, by any means.

Hopefully, though, it'll be just enough for those man pages to start making sepse...

1.2. Platform and Compiler

The code contained within this document was compiled on a Linux PC using Geecompiler. It should, however,
build on just about any platform that usgsc Naturally, this doesn’t apply if you're programming for Windows—see
thesection on Windows programmingelow.

1.3. Official Homepage

This official location of this document is at California State University, Chico, at
http://www.ecst.csuchico.edu/~beej/guide/net/ L

1.4. Note for Solaris/SunOS Programmers

When compiling for Solaris or SunOS, you need to specify some extra command-line switches for linking in the
proper libraries. In order to do this, simply ad¢hsl -Isocket -lresolv " to the end of the compile command,
like so:

$ cc -0 server server.c -Insl -Isocket -lresolv

If you still get errors, you could try further adding d@xhet " to the end of that command line. | don’t know what
that does, exactly, but some people seem to need it.

Another place that you might find problems is in the calbésockopt() . The prototype differs from that on my
Linux box, so instead of:

int yes=1;

Beej's Guide to Network Programming

enter this:
char yes="1’;

As | don't have a Sun box, | haven't tested any of the above information—it’s just what people have told me through
email.

1.5. Note for Windows Programmers

| have a patrticular dislike for Windows, and encourage you to try Linux, BSD, or Unix instead. That being said, you
can still use this stuff under Windows.

First, ignore pretty much all of the system header files | mention in here. All you need to include is:

#include <winsock.h>

Wait! You also have to make a call WiSAStartup() before doing anything else with the sockets library. The code
to do that looks something like this:

#include <winsock.h>

{
WSADATA wsaData; /I if this doesn’t work

//IWSAData wsaData; // then try this instead

if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) {
fprintf(stderr, "WSAStartup failed.\n");
exit(1);

You also have to tell your compiler to link in the Winsock library, usually calledck32.lib or winsock32.lib
or somesuch. Under VC++, this can be done throughrthgct menu, undeBettings... . Click theLink tab,
and look for the box titled "Object/library modules”. Add "wsock32.lib" to that list.

Or so | hear.

Finally, you need to calVSACleanup() when you're all through with the sockets library. See your online help for
details.

Once you do that, the rest of the examples in this tutorial should generally apply, with a few exceptions. For one
thing, you can’t uselose() to close a socket—you need to usesesocket() , instead. Alsoselect() only
works with socket descriptors, not file descriptors (likior stdin).

To get more information about Winsock, read the Winsock Faql go from there.

Finally, | hear that Windows has riork() system call which is, unfortunately, used in some of my examples.
Maybe you have to link in a POSIX library or something to get it to work, or you carCusgeProcess()
insteadfork() takes no arguments, auleateProcess() takes about 48 billion arguments. Welcome to the
wonderful world of Win32 programming.

Beej's Guide to Network Programming

1.6. Email Policy

I’'m generally available to help out with email questions so feel free to write in, but | can’t guarantee a response. | lead
a pretty busy life and there are times when | just can’t answer a question you have. When that's the case, | usually
just delete the message. It's nothing personal; | just won't ever have the time to give the detailed answer you require.

As a rule, the more complex the question, the less likely | am to respond. If you can narrow down your question
before mailing it and be sure to include any pertinent information (like platform, compiler, error messages you're
getting, and anything else you think might help me troubleshoot), you're much more likely to get a response.

If not, hack on it some more, try to find the answer, and if it's still elusive, then write me again with the information
you've found and hopefully it will be enough for me to help out.

Now that I've badgered you about how to write and not write me, I'd just like to let you know fhdly lappreciate
all the praise the guide has received over the years. It's a real morale boost, and it gladdens me to hear that it is being
used for good!) Thank you!

1.7. Mirroring

You are more than welcome to mirror this site, whether publically or privately. If you publically mirror the site and
want me to link to it from the main page, drop me a line béej@piratehaven.org >,

1.8. Note for Translators

If you want to translate the guide into another language, write meeaj@piratehaven.org > and I'll link to
your translation from the main page.

Feel free to add your name and email address to the translation.

Sorry, but due to space constraints, | cannot host the translations myself.

1.9. Copyright and Distribution
Beej's Guide to Network Programming is Copyright © 1995-2001 Brian "Beej" Hall.

This guide may be freely reprinted in any medium provided that its content is not altered, it is presented in its
entirety, and this copyright notice remains intact.

Educators are especially encouraged to recommend or supply copies of this guide to their students.

This guide may be freely translated into any language, provided the translation is accurate, and the guide is reprinted
in its entirety. The translation may also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain.

Contact veej@piratehaven.org > for more information.

Beej's Guide to Network Programming

2. What is a socket?

You hear talk of "sockets" all the time, and perhaps you are wondering just what they are exactly. Well, they're this: a
way to speak to other programs using standard Unix file descriptors.

What?

Ok-you may have heard some Unix hacker state, "Jaearythingn Unix is a file!" What that person may have

been talking about is the fact that when Unix programs do any sort of I/O, they do it by reading or writing to a file
descriptor. A file descriptor is simply an integer associated with an open file. But (and here’s the catch), that file can
be a network connection, a FIFO, a pipe, a terminal, a real on-the-disk file, or just about anything else. Everything in
Unix is a file! So when you want to communicate with another program over the Internet you're gonna do it through
a file descriptor, you'd better believe it.

"Where do | get this file descriptor for network communication, Mr. Smarty-Pants?" is probably the last question on
your mind right now, but I'm going to answer it anyway: You make a call tosthuket() system routine. It returns

the socket descriptor, and you communicate through it using the specisdizé@® andrecv() (man send, man

recv*) socket calls.

"But, hey!" you might be exclaiming right about now. "If it's a file descriptor, why in the name of Neptune can't |
just use the normakad() andwrite() calls to communicate through the socket?" The short answer is, "You can!"
The longer answer is, "You can, b&#nd() andrecv() offer much greater control over your data transmission."

What next? How about this: there are all kinds of sockets. There are DARPA Internet addresses (Internet Sockets),
path names on a local node (Unix Sockets), CCITT X.25 addresses (X.25 Sockets that you can safely ignore), and
probably many others depending on which Unix flavor you run. This document deals only with the first: Internet
Sockets.

2.1. Two Types of Internet Sockets

What's this? There are two types of Internet sockets? Yes. Well, no. I'm lying. There are more, but | didn’t want to
scare you. I'm only going to talk about two types here. Except for this sentence, where I'm going to tell you that
"Raw Sockets" are also very powerful and you should look them up.

All right, already. What are the two types? One is "Stream Sockets"; the other is "Datagram Sockets", which may
hereafter be referred to aSOCK_STREAMind "SOCK_DGRAMrespectively. Datagram sockets are sometimes called
"connectionless sockets". (Though they cartdienect() 'd if you really want. Seeonnect() , below.)

Stream sockets are reliable two-way connected communication streams. If you output two items into the socket in
the order "1, 2", they will arrive in the order "1, 2" at the opposite end. They will also be error free. Any errors you
do encounter are figments of your own deranged mind, and are not to be discussed here.

What uses stream sockets? Well, you may have heard oéliet application, yes? It uses stream sockets. All the
characters you type need to arrive in the same order you type them, right? Also, web browsers use the HTTP protocol
which uses stream sockets to get pages. Indeed, if you telnet to a web site on port 80, acdTygg it'll dump

the HTML back at you!

How do stream sockets achieve this high level of data transmission quality? They use a protocol called "The
Transmission Control Protocol", otherwise known as "TCP" (see RFC{@08xtremely detailed info on TCP.)

TCP makes sure your data arrives sequentially and error-free. You may have heard "TCP" before as the better half of
"TCP/IP" where "IP" stands for "Internet Protocol" (see RFC#79P deals primarily with Internet routing and is

not generally responsible for data integrity.

Beej's Guide to Network Programming

Figure 1. Data Encapsulation.

Et her net || P|UDPTFTP[Data]

Cool. What about Datagram sockets? Why are they called connectionless? What is the deal, here, anyway? Why are
they unreliable? Well, here are some facts: if you send a datagram, it may arrive. It may arrive out of order. If it
arrives, the data within the packet will be error-free.

Datagram sockets also use IP for routing, but they don't use TCP; they use the "User Datagram Protocol", or "UDP"
(see RFC-76%)

Why are they connectionless? Well, basically, it's because you don't have to maintain an open connection as you do
with stream sockets. You just build a packet, slap an IP header on it with destination information, and send it out. No
connection needed. They are generally used for packet-by-packet transfers of information. Sample aptgations:
bootp, etc.

"Enough!" you may scream. "How do these programs even work if datagrams might get lost?!" Well, my human
friend, each has it's own protocol on top of UDP. For example, the tftp protocol says that for each packet that gets
sent, the recipient has to send back a packet that says, "l got it!" (an "ACK" packet.) If the sender of the original
packet gets no reply in, say, five seconds, he’'ll re-transmit the packet until he finally gets an ACK. This
acknowledgment procedure is very important when implemer@®gQK_DGRA#&pplications.

2.2. Low level Nonsense and Network Theory

Since | just mentioned layering of protocols, it's time to talk about how networks really work, and to show some
examples of hovBOCK_DGRApBCKets are built. Practically, you can probably skip this section. It's good
background, however.

Hey, kids, it's time to learn abow@ata EncapsulatiohThis is very very important. It's so important that you might

just learn about it if you take the networks course here at Chico SfateBasically, it says this: a packet is born, the
packet is wrapped ("encapsulated”) in a header (and rarely a footer) by the first protocol (say, the TFTP protocol),
then the whole thing (TFTP header included) is encapsulated again by the next protocol (say, UDP), then again by
the next (IP), then again by the final protocol on the hardware (physical) layer (say, Ethernet).

When another computer receives the packet, the hardware strips the Ethernet header, the kernel strips the IP and
UDP headers, the TFTP program strips the TFTP header, and it finally has the data.

Now | can finally talk about the infamousayered Network ModeThis Network Model describes a system of

network functionality that has many advantages over other models. For instance, you can write sockets programs that
are exactly the same without caring how the data is physically transmitted (serial, thin Ethernet, AUI, whatever)
because programs on lower levels deal with it for you. The actual network hardware and topology is transparent to
the socket programmer.

Without any further ado, I'll present the layers of the full-blown model. Remember this for network class exams:

Beej's Guide to Network Programming

+ Application
« Presentation
« Session

« Transport

« Network

» Data Link

- Physical

The Physical Layer is the hardware (serial, Ethernet, etc.). The Application Layer is just about as far from the
physical layer as you can imagine—it's the place where users interact with the network.

Now, this model is so general you could probably use it as an automobile repair guide if you really wanted to. A
layered model more consistent with Unix might be:

« Application Layer {elnet, ftp, eto.
« Host-to-Host Transport Layef CP, UDB
- Internet Layer P and routing

- Network Access LayerHthernet, ATM, or whatevgr

At this point in time, you can probably see how these layers correspond to the encapsulation of the original data.

See how much work there is in building a simple packet? Jeez! And you have to type in the packet headers yourself
using 'cat"! Just kidding. All you have to do for stream socketsénd() the data out. All you have to do for

datagram sockets is encapsulate the packet in the method of your chooskegéto) it out. The kernel builds

the Transport Layer and Internet Layer on for you and the hardware does the Network Access Layer. Ah, modern
technology.

So ends our brief foray into network theory. Oh yes, | forgot to tell you everything | wanted to say about routing:
nothing! That’s right, I'm not going to talk about it at all. The router strips the packet to the IP header, consults its
routing table, blah blah blah. Check out the IP RFGou really really care. If you never learn about it, well, you'll
live.

3. struct s and Data Handling

Well, we're finally here. It's time to talk about programming. In this section, I'll cover various data types used by the
sockets interface, since some of them are a real bear to figure out.

First the easy one: a socket descriptor. A socket descriptor is the following type:

Beej's Guide to Network Programming
int

Just a regulaint .

Things get weird from here, so just read through and bear with me. Know this: there are two byte orderings: most
significant byte (sometimes called an "octet") first, or least significant byte first. The former is called "Network Byte
Order". Some machines store their numbers internally in Network Byte Order, some don’t. When | say something
has to be in Network Byte Order, you have to call a function (sudhas()) to change it from "Host Byte Order".

If | don’t say "Network Byte Order", then you must leave the value in Host Byte Order.

(For the curious, "Network Byte Order" is also know as "Big-Endian Byte Order".)

My First Struct™—struct sockaddr . This structure holds socket address information for many types of sockets:

struct sockaddr {
unsigned short sa_family; /I address family, AF_xxx
char sa_data[14]; // 14 bytes of protocol address

sa_family can be a variety of things, but it'll b&F_INET for everything we do in this documersa_data
contains a destination address and port number for the socket. This is rather unwieldy since you don’t want to
tediously pack the address in the_data by hand.

To deal withstruct sockaddr , programmers created a parallel structsteict sockaddr_in ("in" for
"Internet".)

struct sockaddr_in {

short int sin_family; // Address family

unsigned short int sin_port; /I Port number

struct in_addr sin_addr; /I Internet address

unsigned char sin_zero[8]; // Same size as struct sockaddr

This structure makes it easy to reference elements of the socket address. Nsite t&xb (which is included to
pad the structure to the length of@uct sockaddr) should be set to all zeros with the functioemset() . Also,
and this is themportantbit, a pointer to atruct sockaddr_in can be cast to a pointer tosetuct sockaddr

and vice-versa. So even thougtket() wants astruct sockaddr* , you can still use atruct sockaddr_in

and cast it at the last minute! Also, notice tlsat_family corresponds tea_family in astruct sockaddr

and should be set taAF_INET". Finally, thesin_port andsin_addr must be inNetwork Byte Order

"But," you object, "how can the entire structuseuct in_addr sin_addr , be in Network Byte Order?" This
guestion requires careful examination of the structtmest in_addr , one of the worst unions alive:

/I Internet address (a structure for historical reasons)
struct in_addr {

unsigned long s_addr; // that's a 32-bit long, or 4 bytes
3

Well, it usedto be a union, but now those days seem to be gone. Good riddance. So if you have dealat@te of
typestruct sockaddr_in , thenina.sin_addr.s_addr references the 4-byte IP address (in Network Byte
Order). Note that even if your system still uses the God-awful uniostfoct in_addr , you can still reference
the 4-byte IP address in exactly the same way as | did above (this ddefioe s.)

Beej's Guide to Network Programming

3.1. Convert the Natives!

We've now been lead right into the next section. There’s been too much talk about this Network to Host Byte Order
conversion—now is the time for action!

All righty. There are two types that you can convattort (two bytes) andong (four bytes). These functions work
for theunsigned variations as well. Say you want to convedrmrt from Host Byte Order to Network Byte Order.
Start with "h" for "host", follow it with "to", then "n" for "network", and "s" for "short": h-to-n-s, lstons() (read:
"Host to Network Short").

It's almost too easy...

You can use every combination if "n", "h", "s", and "I" you want, not counting the really stupid ones. For example,
there is NOT atolh() ("Short to Long Host") function—not at this party, anyway. But there are:

« htons() —"Hostto Network Short"
« htonl() —"Hostto Network Long"
« ntohs() —"Network to Host Short"

« ntohl() —"Network to Host Long"

Now, you may think you’re wising up to this. You might think, "What do | do if | have to change byte order on a

char ?" Then you might think, "Uh, never mind." You might also think that since your 68000 machine already uses
network byte order, you don’t have to catbnl() on your IP addresses. You would be rigBYT if you try to port

to a machine that has reverse network byte order, your program will fail. Be portable! This is a Unix world! (As
much as Bill Gates would like to think otherwise.) Remember: put your bytes in Network Byte Order before you put
them on the network.

A final point: why dosin_addr andsin_port need to be in Network Byte Order inseruct sockaddr_in ,
butsin_family does not? The answesin_addr andsin_port get encapsulated in the packet at the IP and
UDP layers, respectively. Thus, they must be in Network Byte Order. Howevesirthiamily field is only used

by the kernel to determine what type of address the structure contains, so it must be in Host Byte Order. Also, since
sin_family doesnotget sent out on the network, it can be in Host Byte Order.

3.2. IP Addresses and How to Deal With Them

Fortunately for you, there are a bunch of functions that allow you to manipulate IP addresses. No need to figure them
out by hand and stuff them inlang with the « operator.

First, let’s say you have siruct sockaddr_in ina , and you have an IP addres®9!12.110.57 " that you want
to store into it. The function you want to useet_addr() , converts an IP address in numbers-and-dots notation
into an unsigned long. The assignment can be made as follows:

ina.sin_addr.s_addr = inet_addr("10.12.110.57");

10

Beej's Guide to Network Programming

Notice thatinet_addr() returns the address in Network Byte Order already—you don't have tbtoalf)
Swell!

Now, the above code snippet isn’t very robust because there is no error checkirigeSeédr() returns-1 on
error. Remember binary number@®signed)-1 just happens to correspond to the IP address
255.255.255.255 | That's the broadcast address! Wrongo. Remember to do your error checking properly.

Actually, there’s a cleaner interface you can use insteaeeofaddr() : it's calledinet_aton() ("aton" means
"ascii to network"):

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *cp, struct in_addr *inp);

And here’s a sample usage, while packingract sockaddr_in (this example will make more sense to you
when you get to the sections dsind() andconnect() .)

struct sockaddr_in my_addr;

my_addr.sin_family = AF_INET; /I host byte order
my_addr.sin_port = htons(MYPORT); /I short, network byte order
inet_aton("10.12.110.57", &(my_addr.sin_addr));
memset(&(my_addr.sin_zero), \O’, 8); // zero the rest of the struct

inet_aton() , unlike practically every other socket-related functiogturns non-zero on success, and zero on
failure. (If someone knows why, please tell me.) And the address is passed hiagk.in

Unfortunately, not all platforms implemeintet_aton() so, although its use is preferred, the older more common
inet_addr() is used in this guide.

All right, now you can convert string IP addresses to their binary representations. What about the other way around?
What if you have atruct in_addr and you want to print it in numbers-and-dots notation? In this case, you'll
want to use the functioimet_ntoa() ("ntoa" means "network to ascii") like this:

printf("%s", inet_ntoa(ina.sin_addr));

That will print the IP address. Note thiatt_ntoa() takes astruct in_addr as an argument, notieng . Also
notice that it returns a pointer to a char. This points to a statically stored char array ingthiroa() so that each
time you callinet_ntoa() it will overwrite the last IP address you asked for. For example:

char *al, *az;

al inet_ntoa(inal.sin_addr); // this is 192.168.4.14
a2 = inet_ntoa(ina2.sin_addr); // this is 10.12.110.57
printf("address 1: %s\n",al);
printf("address 2: %s\n",a2);

will print:

11

Beej's Guide to Network Programming

address 1: 10.12.110.57
address 2: 10.12.110.57

If you need to save the addressgcpy() it to your own character array.

That's all on this topic for now. Later, you'll learn to convert a string like "whitehouse.gov" into its corresponding IP
address (seBNS, below.)

4. System Calls or Bust

This is the section where we get into the system calls that allow you to access the network functionality of a Unix
box. When you call one of these functions, the kernel takes over and does all the work for you automagically.

The place most people get stuck around here is what order to call these things in. In threththbages are no use,
as you've probably discovered. Well, to help with that dreadful situation, I've tried to lay out the system calls in the
following sections irexactly(approximately) the same order that you'll need to call them in your programs.

That, coupled with a few pieces of sample code here and there, some milk and cookies (which | fear you will have to
supply yourself), and some raw guts and courage, and you'll be beaming data around the Internet like the Son of Jon
Postel!

4.1. socket() —Get the File Descriptor!

I guess | can put it off no longer—I have to talk about theket() system call. Here’s the breakdown:

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

But what are these arguments? Fidgimain should be set toAF_INET", just like in thestruct sockaddr_in
(above.) Next, théype argument tells the kernel what kind of socket thisS®CK_STREAMr SOCK_DGRAM
Finally, just sefprotocol to "0"to havesocket() choose the correct protocol based ontife . (Notes: there
are many morelomain s than I've listed. There are many mdype s than I've listed. See thebcket() man
page. Also, there’s a "better" way to get ftocol . See theyetprotobyname() man page.)

socket() simply returns to you a socket descriptor that you can use in later system callsporerror. The global
variableerrno is setto the error’s value (see therror() man page.)

In some documentation, you’'ll see mention of a mysti®® "INET". This is a weird etherial beast that is rarely seen
in nature, but I might as well clarify it a bit here. Once a long time ago, it was thought that maybe a address family
(what the "AF" in "AF_INET" stands for) might support several protocols that were referenced by their protocol
family (what the "PF" in PF_INET" stands for). That didn’'t happen. Oh well. So the correct thing to do is to use
AF_INET in yourstruct sockaddr_in andPF_INET in your call tosocket() . But practically speaking, you can
UseAF_INET everywhere. And, since that's what W. Richard Stevens does in his book, that's what I'll do here.

12

Beej's Guide to Network Programming

Fine, fine, fine, but what good is this socket? The answer is that it's really no good by itself, and you need to read on
and make more system calls for it to make any sense.

4.2. bind() —What port am | on?

Once you have a socket, you might have to associate that socket with a port on your local machine. (This is
commonly done if you're going ttisten() for incoming connections on a specific port—MUDs do this when they
tell you to "telnet to x.y.z port 6969".) The port number is used by the kernel to match an incoming packet to a
certain process’s socket descriptor. If you're going to only be doicwnaect() , this may be unnecessary. Read it
anyway, just for kicks.

Here is the synopsis for thend() system call:

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockfd is the socket file descriptor returned dycket() . my_addr is a pointer to atruct sockaddr that
contains information about your address, namely, port and IP addddiden can be set tgizeof(struct
sockaddr)

Whew. That's a bit to absorb in one chunk. Let’s have an example:

#include <string.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MYPORT 3490

main()

{

int sockfd;
struct sockaddr_in my_addr;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!
my_addr.sin_family = AF_INET; /I host byte order
my_addr.sin_port = htons(MYPORT); /I short, network byte order
my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");

memset(&(my_addr.sin_zero), "\0’, 8); // zero the rest of the struct

/I don't forget your error checking for bind():
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

13

Beej's Guide to Network Programming

There are a few things to notice hemay_addr.sin_port is in Network Byte Order. So is
my_addr.sin_addr.s_addr . Another thing to watch out for is that the header files might differ from system to
system. To be sure, you should check your lanah pages.

Lastly, on the topic obind() , | should mention that some of the process of getting your own IP address and/or port
can can be automated:

my_addr.sin_port = 0; // choose an unused port at random
my_addr.sin_addr.s_addr = INADDR_ANY; // use my IP address

See, by settingny_addr.sin_port to zero, you are tellingind() to choose the port for you. Likewise, by
settingmy_addr.sin_addr.s_addr to INADDR_ANY you are telling it to automatically fill in the IP address of
the machine the process is running on.

If you are into noticing little things, you might have seen that | didn’t INdDDR_ANYinto Network Byte Order!
Naughty me. However, | have inside iniotADDR_ANYis really zero! Zero still has zero on bits even if you
rearrange the bytes. However, purists will point out that there could be a parallel dimensionNAEDR ANYis,
say, 12 and that my code won't work there. That's ok with me:

my_addr.sin_port = htons(0); // choose an unused port at random
my_addr.sin_addr.s_addr = htonl(INADDR_ANY); // use my IP address

Now we're so portable you probably wouldn't believe it. | just wanted to point that out, since most of the code you
come across won't bother runnimgADDR_ANYthroughhtonl()

bind() also returnsl on error and setsrrno to the error’s value.

Another thing to watch out for when calligind() : don’t go underboard with your port numbers. All ports below
1024 are RESERVED (unless you're the superuser)! You can have any port number above that, right up to 65535
(provided they aren't already being used by another program.)

Sometimes, you might notice, you try to rerun a serverkdnd() fails, claiming "Address already in use." What

does that mean? Well, a bit a of socket that was connected is still hanging around in the kernel, and it's hogging the
port. You can either wait for it to clear (a minute or so), or add code to your program allowing it to reuse the port,
like this:

int yes=1;
/lchar yes="1’; /| Solaris people use this

/I lose the pesky "Address already in use" error message

if (setsockopt(listener,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
perror("setsockopt");
exit(1);

One small extra final note abobihd() : there are times when you won't absolutely have to call it. If you are
connect() ing to a remote machine and you don't care what your local port is (as is the cagelwdtwhere you
only care about the remote port), you can simply cafinect() , it'll check to see if the socket is unbound, and will
bind() it to an unused local port if necessary.

14

Beej's Guide to Network Programming

4.3. connect() —Hey, you!

Let’s just pretend for a few minutes that you're a telnet application. Your user commands you (just like in the movie
TRON) to get a socket file descriptor. You comply and caltket() . Next, the user tells you to connect to
"10.12.110.57 " on port "23" (the standard telnet port.) Yow! What do you do now?

Lucky for you, program, you're now perusing the sectiorconnect() —how to connect to a remote host. So read
furiously onward! No time to lose!

Theconnect() call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

sockfd is our friendly neighborhood socket file descriptor, as returned bydtiet() call,serv_addr isa
struct sockaddr containing the destination port and IP address,addtlen can be set tgizeof(struct
sockaddr)

Isn’t this starting to make more sense? Let’s have an example:

#include <string.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define DEST_IP "10.12.110.57"
#define DEST_PORT 23

main()

{

int sockfd;
struct sockaddr_in dest_addr; /I will hold the destination addr

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!

dest_addr.sin_family = AF_INET; /I host byte order
dest_addr.sin_port = htons(DEST_PORT); /I short, network byte order
dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);
memset(&(dest_addr.sin_zero), \0’, 8); // zero the rest of the struct

/I don't forget to error check the connect()!
connect(sockfd, (struct sockaddr *)&dest addr, sizeof(struct sockaddr));

Again, be sure to check the return value froomnect() —it'll return -1 on error and set the variabégrno .

Also, notice that we didn’t cabind() . Basically, we don’t care about our local port number; we only care where
we're going (the remote port). The kernel will choose a local port for us, and the site we connect to will
automatically get this information from us. No worries.

15

Beej's Guide to Network Programming

4.4. listen() —Will somebody please call me?

Ok, time for a change of pace. What if you don’t want to connect to a remote host. Say, just for kicks, that you want
to wait for incoming connections and handle them in some way. The process is two step: firsiepu , then
youaccept() (see below.)

The listen call is fairly simple, but requires a bit of explanation:
int listen(int sockfd, int backlog);

sockfd is the usual socket file descriptor from thazket() system callbacklog is the number of connections
allowed on the incoming queue. What does that mean? Well, incoming connections are going to wait in this queue
until youaccept() them (see below) and this is the limit on how many can queue up. Most systems silently limit
this number to about 20; you can probably get away with settingsitdn10.

Again, as per usualisten() returns-1 and set®rrno on error.

Well, as you can probably imagine, we need to balll() before we callisten() or the kernel will have us
listening on a random port. Bleah! So if you're going to be listening for incoming connections, the sequence of
system calls you’ll make is:

socket();

bind();

listen();

[* accept() goes here */

I'll just leave that in the place of sample code, since it’s fairly self-explanatory. (The code énrdbgt() section,
below, is more complete.) The really tricky part of this whole sha-bang is the caltépt()

4.5. accept() —"Thank you for calling port 3490."

Get ready—theccept() call is kinda weird! What's going to happen is this: someone far far away will try to
connect() to your machine on a port that you digen() ing on. Their connection will be queued up waiting to
beaccept() ed. You callaccept() and you tell it to get the pending connection. It'll return to yolbrand new
socket file descriptato use for this single connection! That's right, suddenly you hexesocket file descriptofer
the price of one! The original one is still listening on your port and the newly created one is finally resehyi(p
andrecv() .We're there!

The call is as follows:

#include <sys/socket.h>

int accept(int sockfd, void *addr, int *addrlen);

sockfd isthelisten() ing socket descriptor. Easy enouglaldr will usually be a pointer to a locatruct

sockaddr_in . This is where the information about the incoming connection will go (and with it you can determine
which host is calling you from which portaddrlen is a local integer variable that should be set to

sizeof(struct sockaddr_in) before its address is passediteept() . Accept will not put more than that

many bytes int@ddr . If it puts fewer in, it'll change the value @fddrlen to reflect that.

16

Beej's Guide to Network Programming

Guess whataccept() returns-1 and set®rrno if an error occurs. Betcha didn't figure that.

Like before, this is a bunch to absorb in one chunk, so here’s a sample code fragment for your perusal:

#include <string.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MYPORT 3490 /I the port users will be connecting to
#define BACKLOG 10 /I how many pending connections queue will hold

main()

{

int sockfd, new_fd; // listen on sock fd, new connection on new_fd
struct sockaddr_in my_addr; /I my address information

struct sockaddr_in their_addr; // connector's address information

int sin_size;

sockfd = socket(AF_INET, SOCK_STREAM, 0); // do some error checking!
my_addr.sin_family = AF_INET; /I host byte order
my_addr.sin_port = htons(MYPORT); /I short, network byte order
my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP

memset(&(my_addr.sin_zero), \0’, 8); // zero the rest of the struct

/I don't forget your error checking for these calls:
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));

listen(sockfd, BACKLOG);

sin_size = sizeof(struct sockaddr_in);
new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);

Again, note that we will use the socket descriptewv_fd for all send() andrecv() calls. If you're only getting
one single connection ever, you odose() the listeningsockfd in order to prevent more incoming connections
on the same port, if you so desire.

4.6.send() and recv() —Talk to me, baby!

These two functions are for communicating over stream sockets or connected datagram sockets. If you want to use
regular unconnected datagram sockets, you'll need to see the sectiendow() andrecvirom() , below.

Thesend() call:

int send(int sockfd, const void *msg, int len, int flags);

17

Beej's Guide to Network Programming

sockfd is the socket descriptor you want to send data to (whether it's the one returseckby) or the one you
got withaccept() .) msgis a pointer to the data you want to send, & is the length of that data in bytes. Just
setflags t00. (See thesend() man page for more information concerning flags.)

Some sample code might be:

char *msg = "Beej was here!";
int len, bytes_sent;

len = strlen(msg);
bytes_sent = send(sockfd, msg, len, 0);

send() returns the number of bytes actually sent dhis-might be less than the number you told it to sebek,
sometimes you tell it to send a whole gob of data and it just can’t handle it. It'll fire off as much of the data as it can,
and trust you to send the rest later. Remember, if the value returnsghtdy doesn’t match the value ien , it’s

up to you to send the rest of the string. The good news is this: if the packet is small (less than 1K or so) it will
probablymanage to send the whole thing all in one go. Agdinis returned on error, anetrno is set to the error
number.

Therecv() call is similar in many respects:

int recv(int sockfd, void *buf, int len, unsigned int flags);
sockfd is the socket descriptor to read frobuf is the buffer to read the information intlen is the maximum
length of the buffer, anflags can again be set @ (See theecv() man page for flag information.)
recv() returns the number of bytes actually read into the buffer]l oon error (witherrno set, accordingly.)

Wait! recv() can returrp. This can mean only one thing: the remote side has closed the connection on you! A
return value ob isrecv() 's way of letting you know this has occurred.

There, that was easy, wasn't it? You can now pass data back and forth on stream sockets! Whee! You're a Unix
Network Programmer!

4.7. sendto() and recvfrom() —Talk to me, DGRAM-style

"This is all fine and dandy," | hear you saying, "but where does this leave me with unconnected datagram sockets?"
No problemo, amigo. We have just the thing.

Since datagram sockets aren’t connected to a remote host, guess which piece of information we need to give before
we send a packet? That's right! The destination address! Here’s the scoop:

int sendto(int sockfd, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, int tolen);

18

Beej's Guide to Network Programming

As you can see, this call is basically the same as the caitd() with the addition of two other pieces of
information.to is a pointer to atruct sockaddr (which you'll probably have as struct sockaddr_in and
cast it at the last minute) which contains the destination IP address antbpent. can simply be set to
sizeof(struct sockaddr)

Just like withsend() , sendto() returns the number of bytes actually sent (which, again, might be less than the
number of bytes you told it to send!), @ on error.

Equally similar argecv() andrecvfrom() . The synopsis ofecvfrom() is:

int recvfrom(int sockfd, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen);

Again, this is just likerecv() with the addition of a couple fieldfrom is a pointer to a locadtruct sockaddr

that will be filled with the IP address and port of the originating macHnoenlen is a pointer to a locaht that
should be initialized taizeof(struct sockaddr) . When the function return&romlen will contain the length
of the address actually storedfiom .

recvfrom() returns the number of bytes received;:bron error (witherrno set accordingly.)

Remember, if yowonnect() a datagram socket, you can then simply ssel() andrecv() for all your
transactions. The socket itself is still a datagram socket and the packets still use UDP, but the socket interface will
automatically add the destination and source information for you.

4.8. close() and shutdown() —Get outta my face!

Whew! You've beersend() ing andrecv() ing data all day long, and you've had it. You're ready to close the
connection on your socket descriptor. This is easy. You can just use the regular Unix file destriptdr
function:

close(sockfd);

This will prevent any more reads and writes to the socket. Anyone attempting to read or write the socket on the
remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can shettloen() function. It
allows you to cut off communication in a certain direction, or both ways (justclibkse() does.) Synopsis:

int shutdown(int sockfd, int how);
sockfd is the socket file descriptor you want to shutdown, bod is one of the following:
« 0 — Further receives are disallowed
« 1 — Further sends are disallowed

« 2 — Further sends and receives are disallowed dise())

shutdown() returnsO on success, and on error (witherrno set accordingly.)

19

Beej's Guide to Network Programming

If you deign to useshutdown() on unconnected datagram sockets, it will simply make the socket unavailable for
furthersend() andrecv() calls (remember that you can use these if yomnect() your datagram socket.)

It's important to note thathutdown() doesn't actually close the file descriptor—it just changes its usability. To free
a socket descriptor, you need to usese()

Nothing to it.

4.9. getpeername() —Who are you?
This function is so easy.
It's so easy, | almost didn't give it it's own section. But here it is anyway.

The functiongetpeername() ~ will tell you who is at the other end of a connected stream socket. The synopsis:

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);

sockfd is the descriptor of the connected stream sod@ady is a pointer to &truct sockaddr (or astruct
sockaddr_in) that will hold the information about the other side of the connection aaltilen is a pointer to an
int , that should be initialized teizeof(struct sockaddr)

The function returnsl on error and setsrrno accordingly.

Once you have their address, you caniuse ntoa() or gethostbyaddr() to print or get more information.
No, you can't get their login name. (Ok, ok. If the other computer is running an ident daemon, this is possible. This,
however, is beyond the scope of this document. Check out RFC f@rli®iore info.)

4.10. gethostname() —Who am 1?

Even easier thagetpeername() is the functiongethostname() . It returns the name of the computer that your
program is running on. The name can then be usegkbhostbyname() , below, to determine the IP address of
your local machine.

What could be more fun? | could think of a few things, but they don’t pertain to socket programming. Anyway,
here’s the breakdown:

#include <unistd.h>

int gethostname(char *hostname, size_t size);

The arguments are simpleostname is a pointer to an array of chars that will contain the hostname upon the
function’s return, angize is the length in bytes of theosthname array.

The function returng on successful completion, art on error, settinggrrno as usual.

20

Beej's Guide to Network Programming

4.11. DNS-You say "whitehouse.gov", | say "198.137.240.92"

In case you don’t know what DNS is, it stands for "Domain Name Service". In a nutshell, you tell it what the
human-readable address is for a site, and it'll give you the IP address (so you can useiitdgith, connect() ,
sendto() , or whatever you need it for.) This way, when someone enters:

$ telnet whitehouse.gov

telnet can find out that it needs tmnnect() to "198.137.240.92".

But how does it work? You'll be using the functigiethostbyname()

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

As you see, it returns a pointer testuct hostent , the layout of which is as follows:

struct hostent {

char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

3
#define h_addr h_addr_list[0]

And here are the descriptions of the fields in ¢hract hostent

- h_name - Official name of the host.

« h_aliases — A NULL-terminated array of alternate names for the host.
- h_addrtype - The type of address being returned; usuAlly INET .

« h_length —The length of the address in bytes.

« h_addr_list — A zero-terminated array of network addresses for the host. Host addresses are in Network Byte
Order.

- h_addr —The first address ih_addr_list

gethostbyname() returns a pointer to the fillestruct hostent , or NULL on error. (Buterrno is not
set-h_errno is setinstead. Sderror() |, below.)

But how is it used? Sometimes (as we find from reading computer manuals), just spewing the information at the
reader is not enough. This function is certainly easier to use than it looks.

Here’s an example prografn
/*

** getip.c - a hostname lookup demo
*/

21

Beej's Guide to Network Programming

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv(])

{
struct hostent *h;
if (argc != 2) { /I error check the command line
fprintf(stderr,"usage: getip address\n™);
exit(1);
}
if ((h=gethostbyname(argv[1])) == NULL) { // get the host info
herror("gethostbyname");
exit(1);
}
printf("Host name : %s\n", h->h_name);
printf("IP Address : %s\n", inet_ntoa(*((struct in_addr *)h->h_addr)));
return O;
}

With gethostbyname() , you can’t useperror() to print error message (sineerno is not used). Instead, call
herror()

It's pretty straightforward. You simply pass the string that contains the machine name ("whitehouse.gov") to
gethostbyname() , and then grab the information out of the retursedct hostent

The only possible weirdness might be in the printing of the IP address, dibove.addr is achar* , but
inet_ntoa() wants astruct in_addr passed to it. So | cabt>h_addr to astruct in_addr* , then
dereference it to get at the data.

5. Client-Server Background

It's a client-server world, baby. Just about everything on the network deals with client processes talking to server
processes and vice-versa. Tagmet, for instance. When you connect to a remote host on port 23 with telnet (the
client), a program on that host (callezinetd, the server) springs to life. It handles the incoming telnet connection,
sets you up with a login prompt, etc.

The exchange of information between client and server is summarizgdunre 2

22

Beej's Guide to Network Programming

Figure 2. Client-Server Interaction.

Note that the client-server pair can sp&CK_STREAMSOCK_DGRAMT anything else (as long as they're speaking
the same thing.) Some good examples of client-server paitelaet/telnetd, ftp/ftpd, or bootp/bootpd. Every
time you usdtp, there’s a remote prograrfipd, that serves you.

Often, there will only be one server on a machine, and that server will handle multiple clientsausfng . The
basic routine is: server will wait for a connectiacept() it, andfork() a child process to handle it. This is what
our sample server does in the next section.

5.1. A Simple Stream Server

All this server does is send the strinigéllo, World!\n " out over a stream connection. All you need to do to test
this server is run it in one window, and telnet to it from another with:

$ telnet remotehostname 3490

whereremotehostname is the name of the machine you're running it on.

The server codé (Note: a trailing backslash on a line means that the line is continued on the next.)

/*
** server.c - a stream socket server demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <signal.h>

#define MYPORT 3490 /I the port users will be connecting to
#define BACKLOG 10 /I how many pending connections queue will hold

void sigchld_handler(int s)
{

23

Beej's Guide to Network Programming

while(wait(NULL) > 0);
}

int main(void)
{
int sockfd, new_fd; // listen on sock fd, new connection on new_fd
struct sockaddr_in my_addr; /I my address information
struct sockaddr_in their_addr; // connector’s address information
int sin_size;
struct sigaction sa;
int yes=1;

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");

exit(1);
}
if (setsockopt(sockfd,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
perror("setsockopt");
exit(1);
}
my_addr.sin_family = AF_INET; /I host byte order
my_addr.sin_port = htons(MYPORT); /I short, network byte order

my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
memset(&(my_addr.sin_zero), \0’, 8); // zero the rest of the struct

if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr))

== -1) {
perror("bind");
exit(1);
}
if (listen(sockfd, BACKLOG) == -1) {
perror("listen");
exit(1);
}
sa.sa_handler = sigchld_handler; // reap all dead processes
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART,;
if (sigaction(SIGCHLD, &sa, NULL) == -1) {
perror("sigaction");
exit(1);
}
while(1) { // main accept() loop
sin_size = sizeof(struct sockaddr_in);
if (new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
&sin_size)) == -1) {

perror("accept");
continue;

}

printf("server: got connection from %s\n",
inet_ntoa(their_addr.sin_addr));

24

Beej's Guide to Network Programming

if (fork()) { // this is the child process
close(sockfd); // child doesn’'t need the listener
if (send(new_fd, "Hello, world\n", 14, 0) == -1)
perror("send");
close(new_fd);

exit(0);
}
close(new_fd); // parent doesn’t need this
}
return O;

In case you're curious, | have the code in onerign() function for (I feel) syntactic clarity. Feel free to split it
into smaller functions if it makes you feel better.

(Also, this wholesigaction() thing might be new to you—that's ok. The code that's there is responsible for reaping
zombie processes that appear asithig) ed child processes exit. If you make lots of zombies and don’t reap them,
your system administrator will become agitated.)

You can get the data from this server by using the client listed in the next section.

5.2. A Simple Stream Client

This guy’s even easier than the server. All this client does is connect to the host you specify on the command line,
port 3490. It gets the string that the server sends.

The client sourct:

/*
** client.c - a stream socket client demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORT 3490 // the port client will be connecting to
#define MAXDATASIZE 100 // max number of bytes we can get at once
int main(int argc, char *argv[])

{

int sockfd, numbytes;
char buf[MAXDATASIZE];
struct hostent *he;

25

Beej's Guide to Network Programming

struct sockaddr_in their_addr; // connector’s address information

if (argc = 2) {
fprintf(stderr,"usage: client hostname\n");
exit(1);

}

if ((he=gethostbyname(argv[l])) == NULL) { // get the host info
perror("gethostbyname");
exit(1);

}

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}

their_addr.sin_family = AF_INET; /I host byte order
their_addr.sin_port = htons(PORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(&(their_addr.sin_zero), 8); // zero the rest of the struct

if (connect(sockfd, (struct sockaddr *)&their_addr,
sizeof(struct sockaddr)) == -1) {
perror(“connect”);
exit(1);
}

if ((numbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
perror("recv");
exit(1);

}

buf[numbytes] = "\0’;
printf("Received: %s",buf);
close(sockfd);

return O;

Notice that if you don’t run the server before you run the clieatynect() returns "Connection refused". Very

5.3. Datagram Sockets

| really don’t have that much to talk about here, so I'll just present a couple of sample progaters: and

listener sits on a machine waiting for an incoming packet on port 4&&8Rer sends a packet to that port, on the
specified machine, that contains whatever the user enters on the command line.

26

Beej's Guide to Network Programming

Here is the source fdistener.c %

/*
** |istener.c - a datagram sockets "server' demo
*

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define MYPORT 4950 /I the port users will be connecting to
#define MAXBUFLEN 100

int main(void)

{
int sockfd;
struct sockaddr_in my_addr; /I my address information
struct sockaddr_in their_addr; // connector’s address information
int addr_len, numbytes;
char buf[MAXBUFLEN];

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
perror("socket");
exit(1);
}
my_addr.sin_family = AF_INET; /I host byte order
my_addr.sin_port = htons(MYPORT); /I short, network byte order

my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
memset(&(my_addr.sin_zero), \0’, 8); // zero the rest of the struct

if (bind(sockfd, (struct sockaddr *)&my_addr,
sizeof(struct sockaddr)) == -1) {
perror("bind");
exit(1);
}

addr_len = sizeof(struct sockaddr);
if ((numbytes=recvfrom(sockfd,buf, MAXBUFLEN-1, O,
(struct sockaddr *)&their_addr, &addr_len)) == -1) {
perror("recvfrom");
exit(1);
}

printf("got packet from %s\n",inet_ntoa(their_addr.sin_addr));
printf("packet is %d bytes long\n",numbytes);
buf[numbytes] = "\0’;

printf("packet contains \"%s\"\n",buf);

27

Beej's Guide to Network Programming

close(sockfd);

return O;

Notice that in our call tgocket() we're finally usingSOCK_DGRAMIso, note that there’s no needlisten()

or accept()

Next comes the source falker.c

/*
** tal
*/

. This is one of the perks of using unconnected datagram sockets!

14.

ker.c - a datagram “client" demo

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define MYPORT 4950 /I the port users will be connecting to

int main(int argc, char *argv[])

{

int sockfd;

struct sockaddr_in their_addr; // connector's address information
struct hostent *he;

int numbytes;

if (argc != 3) {
fprintf(stderr,"usage: talker hostname message\n");
exit(1);

}

if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
perror("gethostbyname™);
exit(1);

}

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
perror("socket");
exit(1);

}

their_addr.sin_family = AF_INET; /I host byte order
their_addr.sin_port = htons(MYPORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(&(their_addr.sin_zero), "\0’, 8); // zero the rest of the struct

28

Beej's Guide to Network Programming

if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), O,
(struct sockaddr *)&their_addr, sizeof(struct sockaddr))) == -1) {
perror("sendto");
exit(1);
}

printf("sent %d bytes to %s\n", numbytes,
inet_ntoa(their_addr.sin_addr));

close(sockfd);

return O;

And that's all there is to it! Rutistener on some machine, then rt@lker on another. Watch them communicate!
Fun G-rated excitement for the entire nuclear family!

Except for one more tiny detail that I've mentioned many times in the past: connected datagram sockets. | need to
talk about this here, since we're in the datagram section of the document. Let’s stalkbatallsconnect() and
specifies thdistener's address. From that point otalker may only sent to and receive from the address specified by
connect() . For this reason, you don't have to ussndto() andrecvfrom() ; you can simply useend() and

recv()

6. Slightly Advanced Techniques

These aren’teally advanced, but they’re getting out of the more basic levels we've already covered. In fact, if you've
gotten this far, you should consider yourself fairly accomplished in the basics of Unix network programming!
Congratulations!

So here we go into the brave new world of some of the more esoteric things you might want to learn about sockets.
Have at it!

6.1. Blocking

Blocking. You've heard about it—-now what the heck is it? In a nutshell, "block" is techie jargon for "sleep”. You
probably noticed that when you riistener, above, it just sits there until a packet arrives. What happened is that it
calledrecvfrom() , there was no data, and smvfrom() is said to "block" (that is, sleep there) until some data
arrives.

Lots of functions blockaccept() blocks. All therecv() functions block. The reason they can do this is because
they're allowed to. When you first create the socket descriptor suitket() , the kernel sets it to blocking. If you
don’t want a socket to be blocking, you have to make a cdtirtt)

#include <unistd.h>
#include <fcntl.h>

29

Beej's Guide to Network Programming

sockfd = socket(AF_INET, SOCK_STREAM, 0);
fentl(sockfd, F_SETFL, O_NONBLOCK);

By setting a socket to non-blocking, you can effectively "poll" the socket for information. If you try to read from a
non-blocking socket and there’s no data there, it's not allowed to block—it will retuamderrno will be set to
EWOULDBLOCK

Generally speaking, however, this type of polling is a bad idea. If you put your program in a busy-wait looking for
data on the socket, you'll suck up CPU time like it was going out of style. A more elegant solution for checking to
see if there’s data waiting to be read comes in the following secticrelent()

6.2. select() —Synchronous I/O Multiplexing

This function is somewhat strange, but it's very useful. Take the following situation: you are a server and you want to
listen for incoming connections as well as keep reading from the connections you already have.

No problem, you say, just aatcept() and a couple ofecv() s. Not so fast, buster! What if you're blocking on an
accept() call? How are you going teecv() data at the same time? "Use non-blocking sockets!" No way! You
don’t want to be a CPU hog. What, then?

select() gives you the power to monitor several sockets at the same time. It'll tell you which ones are ready for
reading, which are ready for writing, and which sockets have raised exceptions, if you really want to know that.

Without any further ado, I'll offer the synopsis sélect()

#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int numfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

The function monitors "sets" of file descriptors; in particuleadfds , writefds , andexceptfds . If you want

to see if you can read from standard input and some socket descsiptkfd |, just add the file descriptotsand
sockfd tothe sereadfds . The parametenumfds should be set to the values of the highest file descriptor plus
one. In this example, it should be setstockfd+1 |, since it is assuredly higher than standard inpiit (

Whenselect() returnsreadfds will be modified to reflect which of the file descriptors you selected which is
ready for reading. You can test them with the ma@o ISSET() , below.

Before progressing much further, I'll talk about how to manipulate these sets. Each set is of thi ¢gpe. The
following macros operate on this type:

« FD_ZERO(fd_set *set) — clears a file descriptor set
« FD_SET(int fd, fd_set *set) —addsfd to the set
« FD_CLR(int fd, fd_set *set) —removedd from the set

30

Beej's Guide to Network Programming

« FD_ISSET(int fd, fd_set *set) —tests to see iid is in the set

Finally, what is this weirded outruct timeval ? Well, sometimes you don’'t want to wait forever for someone to
send you some data. Maybe every 96 seconds you want to print "Still Going..." to the terminal even though nothing
has happened. This time structure allows you to specify a timeout period. If the time is exceededa()d still

hasn’t found any ready file descriptors, it'll return so you can continue processing.

Thestruct timeval has the follow fields:

struct timeval {
int tv_sec; /I seconds
int tv_usec; /I microseconds

Just setv_sec to the number of seconds to wait, andsetusec to the number of microseconds to wait. Yes,
that'smicroseconds, not milliseconds. There are 1,000 microseconds in a millisecond, and 1,000 milliseconds in a
second. Thus, there are 1,000,000 microseconds in a second. Why is it "usec"? The "u" is supposed to look like the
Greek letten: (Mu) that we use for "micro”. Also, when the function returtisjeout mightbe updated to show

the time still remaining. This depends on what flavor of Unix you're running.

Yay! We have a microsecond resolution timer! Well, don’t count on it. Standard Unix timeslice is around 100
milliseconds, so you might have to wait that long no matter how small you sekyoar timeval

Other things of interest: If you set the fields in yatnuct timeval to0, select() will timeout immediately,
effectively polling all the file descriptors in your sets. If you set the parantisbeout to NULL, it will never

timeout, and will wait until the first file descriptor is ready. Finally, if you don't care about waiting for a certain set,
you can just set it to NULL in the call teelect()

The following code snippé&twaits 2.5 seconds for something to appear on standard input:

/*
** gselect.c - a select() demo
*

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#define STDIN O // file descriptor for standard input
int main(void)
{

struct timeval tv;

fd_set readfds;

tv.tv_sec = 2;
tv.tv_usec = 500000;

FD_ZERO(&readfds);
FD_SET(STDIN, &readfds);

/I don't care about writefds and exceptfds:
select(STDIN+1, &readfds, NULL, NULL, &tv);

31

Beej's Guide to Network Programming

if (FD_ISSET(STDIN, &readfds))
printf("A key was pressed\n");
else
printf("Timed out.\n");

return O;

If you're on a line buffered terminal, the key you hit should be RETURN or it will time out anyway.

Now, some of you might think this is a great way to wait for data on a datagram socket—and you aremigjtit it
be. Some Unices can use select in this manner, and some can't. You should see what your local man page says on the
matter if you want to attempt it.

Some Unices update the time in yatuct timeval to reflect the amount of time still remaining before a
timeout. But others do not. Don’t rely on that occurring if you want to be portable. detlmeofday() if you
need to track time elapsed. It's a bummer, | know, but that’s the way it is.)

What happens if a socket in the read set closes the connection? Well, in thatetaxs, returns with that socket
descriptor set as "ready to read". When you actuallyede() fromit, recv() will return 0. That's how you know
the client has closed the connection.

One more note of interest abatiect() : if you have a socket that Isten() ing, you can check to see if there
is a new connection by putting that socket's file descriptor inrdaelfds set.

And that, my friends, is a quick overview of the almiglstect() function.

But, by popular demand, here is an in-depth example. Unfortunately, the difference between the dirt-simple example,
above, and this one here is significant. But have a look, then read the description that follows it.

This progran acts like a simple multi-user chat server. Start it running in one window,tteat to it ("telnet
hostname 9034) from multiple other windows. When you type something in égl@et session, it should appear in
all the others.

/*
** gelectserver.c - a cheezy multiperson chat server
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define PORT 9034 // port we’re listening on

int main(void)

{
fd_set master; /[master file descriptor list
fd_set read_fds; // temp file descriptor list for select()
struct sockaddr_in myaddr; /I server address

32

Beej's Guide to Network Programming

struct sockaddr_in remoteaddr; // client address

int fdmax; /I maximum file descriptor number

int listener; /I listening socket descriptor

int newfd,; /I newly accept()ed socket descriptor

char buf[256]; /I buffer for client data

int nbytes;

int yes=1; /I for setsockopt() SO_REUSEADDR, below
int addrlen;

int i, j;

FD_ZERO(&master); /I clear the master and temp sets

FD_ZERO(&read_fds);

/I get the listener

if ((listener = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}

/I lose the pesky "address already in use" error message
if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes,
sizeof(int)) == -1) {
perror("setsockopt");
exit(1);
}

/I bind

myaddr.sin_family = AF_INET;
myaddr.sin_addr.s_addr = INADDR_ANY;
myaddr.sin_port = htons(PORT);
memset(&(myaddr.sin_zero), \0’, 8);

if (bind(listener, (struct sockaddr *)&myaddr, sizeof(myaddr)) == -1) {
perror("bind");
exit(1);
}
Il listen
if (listen(listener, 10) == -1) {
perror("listen");
exit(1);
}

/I add the listener to the master set
FD_SET(listener, &master);

/I keep track of the biggest file descriptor
fdmax = listener; // so far, it's this one

/I main loop
for(;;) {
read_fds = master; // copy it
if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) {
perror("select");
exit(1);

33

Beej's Guide to Network Programming

/I run through the existing connections looking for data to read
for(i = 0; i <= fdmax; i++) {
if (FD_ISSET(i, &read_fds)) { // we got one!!
if (i == listener) {
/I handle new connections
addrlen = sizeof(remoteaddr);
if ((newfd = accept(listener, (struct sockaddr *)&remoteaddr,

&addrlen)) == -1) {
perror("accept");

} else {
FD_SET(newfd, &master); // add to master set

if (newfd > fdmax) { /I keep track of the maximum
fdmax = newfd,

}
printf("selectserver: new connection from %s on "
"socket %d\n", inet_ntoa(remoteaddr.sin_addr), newfd);

}

} else {
/I handle data from a client
if ((nbytes = recv(i, buf, sizeof(buf), 0)) <= 0) {
/I got error or connection closed by client
if (nbytes == 0) {
/I connection closed

printf("selectserver: socket %d hung up\n", i);
} else {

perror("recv");
}
close(i); // bye!

FD_CLR(i, &master); // remove from master set
} else {

/I we got some data from a client
forG = 0; j <= fdmax; j++) {
/I send to everyone!
if (FD_ISSET(j, &master)) {
/I except the listener and ourselves
if (j '= listener && j '= i) {
if (send(j, buf, nbytes, 0) == -1) {
perror("send");
}

}
}
} /I i's SO UGLY!

}

return O;

Natice | have two file descriptor sets in the codester andread_fds . The first,master , holds all the socket
descriptors that are currently connected, as well as the socket descriptor that is listening for new connections.

34

Beej's Guide to Network Programming

The reason | have thmaster setis thaselect() actuallychangeghe set you pass into it to reflect which sockets
are ready to read. Since | have to keep track of the connections from one szlda@f) to the next, | must store
these safely away somewhere. At the last minute, | copyrthster into theread_fds , and then calselect()

But doesn’t this mean that every time | get a new connection, | have to add it hoaster set? Yup! And every
time a connection closes, | have to remove it fromriester set? Yes, it does.

Notice | check to see when thistener socket is ready to read. When it is, it means | have a new connection
pending, and hccept() it and add it to thenaster set. Similarly, when a client connection is ready to read, and
recv() returnso, | know the client has closed the connection, and | must remove it fromgster set.

If the clientrecv() returns non-zero, though, | know some data has been received. So | get it, and then go through
themaster list and send that data to all the rest of the connected clients.

And that, my friends, is a less-than-simple overview of the almighlyct() function.

6.3. Handling Partial send() s

Remember back in theection abousend() , above, when | said thaend() might not send all the bytes you asked
it to? That is, you want it to send 512 bytes, but it returns 412. What happened to the remaining 100 bytes?

Well, they're still in your little buffer waiting to be sent out. Due to circumstances beyond your control, the kernel
decided not to send all the data out in one chunk, and now, my friend, it's up to you to get the data out there.

You could write a function like this to do it, too:

#include <sys/types.h>
#include <sys/socket.h>

int sendall(iint s, char *buf, int *len)

{
int total = O; /I how many bytes we've sent
int bytesleft = *len; // how many we have left to send
int n;
while(total < *len) {
n = send(s, buf+total, bytesleft, 0);
if (n == -1) { break; }
total += n;
bytesleft -= n;
}
*len = total; // return number actually sent here
return n==-1?-1:0; // return -1 on failure, 0 on success
}

In this examples is the socket you want to send the datakbtaf, is the buffer containing the data, aleh is a
pointer to arint containing the number of bytes in the buffer.

The function returnsl on error (ancerrno is still set from the call teend() .) Also, the number of bytes actually
sent is returned iten . This will be the same number of bytes you asked it to send, unless there was an error.

35

Beej's Guide to Network Programming

sendall() will do it's best, huffing and puffing, to send the data out, but if there’s an error, it gets back to you right
away.

For completeness, here’s a sample call to the function:

char buf[10] = "Beej'";
int len;

len = strlen(buf);
if (sendall(s, buf, &len) == -1) {
perror("sendall");
printf("We only sent %d bytes because of the error'\n", len);

What happens on the receiver’s end when part of a packet arrives? If the packets are variable length, how does the
receiver know when one packet ends and another begins? Yes, real-world scenarios are a royal pain in the donkeys.
You probably have tencapsulatéremember that from théata encapsulation sectiaray back there at the

beginning?) Read on for details!

6.4. Son of Data Encapsulation

What does it really mean to encapsulate data, anyway? In the simplest case, it means you'll stick a header on there
with either some identifying information or a packet length, or both.

What should your header look like? Well, it's just some binary data that represents whatever you feel is necessary to
complete your project.

Wow. That’s vague.

Okay. For instance, let’s say you have a multi-user chat program thaS0ga¢ STREA84 When a user types
("says") something, two pieces of information need to be transmitted to the server: what was said and who said it.

So far so good? "What's the problem?" you're asking.

The problem is that the messages can be of varying lengths. One person named "tom" might say, "Hi", and another
person named "Benjamin” might say, "Hey guys what is up?"

Soyousend() all this stuff to the clients as it comes in. Your outgoing data stream looks like this:
tomHiBenjaminHeyguyswhatisup?

And so on. How does the client know when one message starts and another stops? You could, if you wanted, make
all messages the same length and just calktmelall) we implementedabove But that wastes bandwidth! We
don't want tosend() 1024 bytes just so "tom" can say "Hi".

So weencapsulatehe data in a tiny header and packet structure. Both the client and server know how to pack and
unpack (sometimes referred to as "marshal” and "unmarshal®) this data. Don’t look now, but we're starting to define
aprotocolthat describes how a client and server communicate!

36

Beej's Guide to Network Programming

In this case, let's assume the user name is a fixed length of 8 characters, padded witAnd then let's assume the
data is variable length, up to a maximum of 128 characters. Let's have a look a sample packet structure that we might
use in this situation:

1.len (1 byte, unsigned) — The total length of the packet, counting the 8-byte user name and chat data.
2.name (8 bytes) — The user’'s name, NUL-padded if necessary.

3.chatdata (n-bytes) — The data itself, no more than 128 bytes. The length of the packet should be calculated as
the length of this data plus 8 (the length of the name field, above).

Why did | choose the 8-byte and 128-byte limits for the fields? | pulled them out of the air, assuming they'd be long
enough. Maybe, though, 8 bytes is too restrictive for your needs, and you can have a 30-byte name field, or whatever.
The choice is up to you.

Using the above packet definition, the first packet would consist of the following information (in hex and ASCII):

0A 74 6F 6D 00 00 00 OO OO 48 69
(lengthy T o m (padding) H i

And the second is similar:

14 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ..
(length)y B e n j a m i n H e vy g u y s w

(The length is stored in Network Byte Order, of course. In this case, it's only one byte so it doesn’t matter, but
generally speaking you’ll want all your binary integers to be stored in Network Byte Order in your packets.)

When you're sending this data, you should be safe and use a command sirsdladdt) , above, so you know
all the data is sent, even if it takes multiple callsémd() to get it all out.

Likewise, when you're receiving this data, you need to do a bit of extra work. To be safe, you should assume that you
might receive a partial packet (like maybe we reced@ 14 42 65 6E " from Benjamin, above, but that’s all we
get in this call torecv()). We need to callecv() over and over again until the packet is completely received.

But how? Well, we know the number of bytes we need to receive in total for the packet to be complete, since that
number is tacked on the front of the packet. We also know the maximum packet size is 1+8+128, or 137 bytes
(because that's how we defined the packet.)

What you can do is declare an array big enough for two packets. This is your work array where you will reconstruct
packets as they arrive.

Every time youecv() data, you'll feed it into the work buffer and check to see if the packet is complete. That is,

the number of bytes in the buffer is greater than or equal to the length specified in the header (+1, because the length
in the header doesn't include the byte for the length itself.) If the number of bytes in the buffer is less than 1, the
packet is not complete, obviously. You have to make a special case for this, though, since the first byte is garbage and
you can't rely on it for the correct packet length.

Once the packet is complete, you can do with it what you will. Use it, and remove it from your work buffer.

Whew! Are you juggling that in your head yet? Well, here’s the second of the one-two punch: you might have read
past the end of one packet and onto the next in a siegi€) call. That is, you have a work buffer with one

37

Beej's Guide to Network Programming
complete packet, and an incomplete part of the next packet! Bloody heck. (But this is why you made your work
buffer large enough to holdvo packets—in case this happened!)

Since you know the length of the first packet from the header, and you've been keeping track of the number of bytes
in the work buffer, you can subtract and calculate how many of the bytes in the work buffer belong to the second
(incomplete) packet. When you've handled the first one, you can clear it out of the work buffer and move the patrtial
second packed down the to front of the buffer so it's all ready to go for theraex)

(Some of you readers will note that actually moving the partial second packet to the beginning of the work buffer
takes time, and the program can be coded to not require this by using a circular buffer. Unfortunately for the rest of
you, a discussion on circular buffers is beyond the scope of this article. If you're still curious, grab a data structures
book and go from there.)

I never said it was easy. Ok, | did say it was easy. And it is; you just need practice and pretty soon it'll come to you
naturally. By Excalibur | swear it!

7. More References

You've come this far, and now you're screaming for more! Where else can you go to learn more about all this stuff?

7.1. man Pages

Try the following man pages, for starters:

« htonl() '
« htons() *®
« ntohl() *°

« ntohs() 2°

« inet_aton() *

« inet_addr() *

- inet_ntoa() Z#

- socket()

- socket options %

- bind() 2

. connect()

. listen) *

. accept() *

« send() *

38

Beej's Guide to Network Programming

« recv() *#

. sendto() *

« recvfrom()

« close() *

« shutdown() **

« getpeername() *

- getsockname() ¥

. gethostbyname() *®
- gethostbyaddr() %
- getprotobyname() %
o fontl) #

. select() *#

. perror) *

. gettimeofday() *

7.2. Books

For old-school actual hold-it-in-your-hand pulp paper books, try some of the following excellent guides. Note the
prominent Amazon.com logo. What all this shameless commercialism means is that | basically get a kickback
(Amazon.com store credit, actually) for selling these books through this guide. So if you're going to order one of
these books anyway, why not send me a special thank you by starting your spree from one of the links, below.

Besides, more books for me might ultimately lead to more guides for;y)ou.

IN ASSOCIATION WITH

amazoncom.

45

Unix Network Programming, volumes 1b2 W. Richard Stevens. Published by Prentice Hall. ISBNs for volumes
1-2: 013490012%, 0130810819.

Internetworking with TCP/IP, volumes I-1dy Douglas E. Comer and David L. Stevens. Published by Prentice Hall.
ISBNs for volumes I, 11, and 111: 01301838606 0139738436, 013848714%8.

TCP/IP lllustrated, volumes 14y W. Richard Stevens and Gary R. Wright. Published by Addison Wesley. ISBNs
for volumes 1, 2, and 3: 0201633469020163354%, 0201634953.

TCP/IP Network Administratioby Craig Hunt. Published by O'Reilly & Associates, Inc. ISBN 1565923227

Advanced Programming in the UNIX EnvironmégtW. Richard Stevens. Published by Addison Wesley. ISBN
020156317%.

39

Beej's Guide to Network Programming

Using C on the UNIX Systebly David A. Curry. Published by O'Reilly & Associates, Inc. ISBN 0937175234t
of print.

7.3. Web References

On the web:

BSD Sockets: A Quick And Dirty Printé¢has other great Unix system programming info, too!)
The Unix Socket FAD

Client-Server Computirtgy

Intro to TCP/IP® (gopher)

Internet Protocol Frequently Asked Questiths

The Winsock FA®

7.4. RFCs

RFC$%-the real dirt:

RFC-768>-The User Datagram Protocol (UDP)
RFC-79%“The Internet Protocol (IP)

RFC-793>-The Transmission Control Protocol (TCP)
RFC-854°-The Telnet Protocol

RFC-95%-The Bootstrap Protocol (BOOTP)
RFC-1356°The Trivial File Transfer Protocol (TFTP)

8. Common Questions

Q: Where can | get those header files?

A: If you don’t have them on your system already, you probably don’t need them. Check the manual for your
particular platform. If you're building for Windows, you only need to #include <winsock.h>

Q: What do | do when bind() reports "Address already in use"?

A: You have to usesetsockopt() with the SO_REUSEADD®&ption on the listening socket. Check out the
section onbind() and the section onselect() for an example.

40

Beej's Guide to Network Programming

Q: How do | get a list of open sockets on the system?

A: Use the netstat. Check the man page for full details, but you should get some good output just typing:
$ netstat

The only trick is determining which socket is associated with which program.

Q: How can | view the routing table?

A: Run the route command (in /shin on most Linuxes) or the command netstat -r.

Q: How can | run the client and server programs if | only have one computer? Don’t | need a network to write
network program?

A: Fortunately for you, virtually all machines implement a loopback network "device" that sits in the kernel
and pretends to be a network card. (This is the interface listed asld " in the routing table.)

Pretend you're logged into a machine namggat ". Run the client in one window and the server in another. Or start
the server in the backgrounds@rver &") and run the client in the same window. The upshot of the loopback device
is that you can eitheglient goat or client localhost(since 'localhost " is likely defined in youretc/hosts file)

and you'll have the client talking to the server without a network!

In short, no changes are necessary to any of the code to make it run on a single non-networked machine! Huzzah!

Q: How can | tell if the remote side has closed connection?

A: You can tell becauserecv() will return 0.

Q: How do | implement a "ping" utility? What is ICMP? Where can | find out more about raw sockets and
SOCK_RAW

A: All your raw sockets questions will be answered in W. Richard Stevens’ UNIX Network Programming
books. See théookssection of this guide.

Q: How do | build for Windows?

A: First, delete Windows and install Linux or BSD. };-) . No, actually, just see thesection on building for
Windows in the introduction.

Q: How do | build for Solaris/SunOS? | keep getting linker errors when | try to compile!

A: The linker errors happen because Sun boxes don’t automatically compile in the socket libraries. See the
section on building for Solaris/SunOSin the introduction for an example of how to do this.

41

Beej's Guide to Network Programming

Q: Why doesselect() keep falling out on a signal?

A: Signals tend to cause blocked system calls to retursi with errno set toEINTR. When you set up a signal
handler with sigaction() , you can set the flagsA_RESTARTwhich is supposed to restart the system call
after it was interrupted.

Naturally, this doesn't always work.

My favorite solution to this involves goto statement. You know this irritates your professors to no end, so go for it!

select_restart:
if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
if (errno == EINTR) {
/I some signal just interrupted us, so restart
goto select_restart;
}
/I handle the real error here:
perror("select");

Sure, you don’heedto usegoto in this case; you can use other structures to control it. But | thinlgdie
statement is actually cleaner.

Q: How can | implement a timeout on a call torecv() ?

A: Useselect() !Itallows you to specify a timeout parameter for socket descriptors that you're looking to
read from. Or, you could wrap the entire functionality in a single function, like this:

#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

int recvtimeout(int s, char *buf, int len, int timeout)
{

fd_set fds;

int n;

struct timeval tv;

/I set up the file descriptor set
FD_ZERO(&fds);
FD_SET(s, &fds);

/I set up the struct timeval for the timeout
tv.tv_sec = timeout;
tv.tv_usec = O;

/I wait until timeout or data received

n = select(s+1, &fds, NULL, NULL, &tv);
if (n == 0) return -2; // timeout!

if (n == -1) return -1; // error

42

Beej's Guide to Network Programming

/I data must be here, so do a normal recv()
return recv(s, buf, len, 0);

}

/I Sample call to recvtimeout():

n = recvtimeout(s, buf, sizeof(buf), 10); // 10 second timeout

if (n == -1) {
/I error occurred
perror(“"recvtimeout");

}
else if (n == -2) {
/I timeout occurred
} else {
/I got some data in buf

}

Notice thatrecvtimeout() returns-2 in case of a timeout. Why not retuer? Well, if you recall, a return value of
0 on acalltorecv() means that the remote side closed the connection. So that return value is already spoken for,
and-1 means "error", so | chose as my timeout indicator.

Q: How do | encrypt or compress the data before sending it through the socket?
A: One easy way to do encryption is to use SSL (secure sockets layer), but that’s beyond the scope of this guide.

But assuming you want to plug in or implement your own compressor or encryption system, it's just a matter of
thinking of your data as running through a sequence of steps between both ends. Each step changes the data in some
way.

1. server reads data from file (or whereever)
2. server encrypts data (you add this part)

3.serversend() s encrypted data

Now the other way around:

4. clientrecv() s encrypted data
5. client decrypts data (you add this part)

6. client writes data to file (or whereever)

43

Beej's Guide to Network Programming

You can also do compression at the same point that you do the encryption/decryption, above. Or you could do both!
Just remember to compress before you encrypt.

Just as long as the client properly undoes what the server does, the data will be fine in the end no matter how many
intermediate steps you add.

So all you need to do to use my code is to find the place between where the data is read and the data is sent (using
send()) over the network, and stick some code in there that does the encryption.

Q: What is this " PF_INET" | keep seeing? Is it related toAF_INET?

A: Yes, yes it is. Seghe section onsocket() for detalils.

Q: How can | write a server that accepts shell commands from a client and executes them?

A: For simplicity, lets say the clientconnect() s,send() S, andclose() s the connection (that is, there are no
subsequent system calls without the client connecting again.)

The process the client follows is this:

1.connect() to server
2.send("/sbin/ls > /tmp/client.out")

3.close() the connection

Meanwhile, the server is handling the data and executing it:

1.accept() the connection from the client
2. recv(str) the command string
3.close() the connection

4. system(str) to run the command

Beware!Having the server execute what the client says is like giving remote shell access and people can do things to
your account when they connect to the server. For instance, in the above example, what if the cliemhserfids "
~"? It deletes everything in your account, that's what!

So you get wise, and you prevent the client from using any except for a couple utilities that you know are safe, like
thefoobar utility:

if (Istrcmp(str, "foobar")) {
sprintf(sysstr, "%s > /tmp/server.out", str);
system(sysstr);

44

Beej's Guide to Network Programming

But you're still unsafe, unfortunately: what if the client enteiaobar; rm -rf ~ "? The safest thing to do is to write a
little routine that puts an escape () character in front of all non-alphanumeric characters (including spaces, if
appropriate) in the arguments for the command.

As you can see, security is a pretty big issue when the server starts executing things the client sends.

Q: I'm sending a slew of data, but when Irecv() , it only receives 536 bytes or 1460 bytes at a time. But if |
run it on my local machine, it receives all the data at the same time. What's going on?

A: You're hitting the MTU—-the maximum size the physical medium can handle. On the local machine, you're
using the loopback device which can handle 8K or more no problem. But on ethernet, which can only handle
1500 bytes with a header, you hit that limit. Over a modem, with 576 MTU (again, with header), you hit the
even lower limit.

You have to make sure all the data is being sent, first of all. (Sesetitall() function implementation for
details.) Once you're sure of that, then you need toreall() in a loop until all your data is read.

Read the sectioBon of Data Encapsulatidor details on receiving complete packets of data using multiple calls to
recv()

Q: I'm on a Windows box and | don’t have the fork() system call or any kind ofstruct sigaction . What
to do?

A: If they're anywhere, they’ll be in POSIX libraries that may have shipped with your compiler. Since | don’t
have a Windows box, | really can't tell you the answer, butl seem to remember that Microsoft has a POSIX
compatibility layer, and that’s where fork() would be. (And maybe eversigaction .)

Search the help that came with VC++ for "fork” or "POSIX" and see if it gives you any clues.

If that doesn’t work at all, ditch théork() /sigaction stuff and replace it with the Win32 equivalent:
CreateProcess() .| don’t know how to useCreateProcess() —it takes a bazillion arguments, but it should be
covered in the docs that came with VC++,

9. Disclaimer and Call for Help

Well, that's the lot of it. Hopefully at least some of the information contained within this document has been
remotely accurate and | sincerely hope there aren’t any glaring errors. Well, sure, there always are.

So, let this be a warning to you! I'm sorry if any inaccuracies contained herein have caused you any grief, but you
just can’t hold me accountable. See, | don’t stand behind a single word of this document, legally speaking. The
whole thing could be completely and utterly wrong!

But it's probably not. After all, I've spent many many hours messing with this stuff, and implemented several TCP/IP
network utilities at work, have written multiplayer game engines, and so on. But I'm not the sockets god; I'm just
some guy.

45

Beej's Guide to Network Programming

By the way, if anyone has any constructive (or destructive) criticism about this document, please send mail to
<beej@piratehaven.org > and I'll try to make an effort to set the record straight.

In case you're wondering why | did this, well, | did it for the money. Ha! No, really, | did it because a lot of people

have asked me socket-related questions and when | tell them I've been thinking about putting together a socket page,
they say, "Cool!" Besides, | feel that all this hard-earned knowledge is going to waste if | can’t share it with others.
The web just happens to be the perfect vehicle. | encourage others to provide similar information whenever possible.

Enough of this—back to codingt)

Notes

http://www.ecst.csuchico.edu/~beej/guide/net/
http://www.cyberport.com/~tangent/programming/winsock/
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/send.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/recv.2.inc
http://lwww.rfc-editor.org/rfc/rfc793.txt
http://lwww.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc768.txt

http://www.rfc-editor.org/rfc/rfc791.txt

© © N o g~ w NP

http://www.rfc-editor.org/rfc/rfc1413.txt

[Eny
o

. http://mww.ecst.csuchico.edu/~beej/guide/net/examples/getip.c

=
=

. http:/mww.ecst.csuchico.edu/~beej/guide/net/examples/server.c

[EnY
N

. http://iww.ecst.csuchico.edu/~beej/guide/net/examples/client.c

[N
w

. http://iww.ecst.csuchico.edu/~beej/guide/net/examples/listener.c

14. http://www.ecst.csuchico.edu/~beej/guide/net/examples/talker.c

15. http://www.ecst.csuchico.edu/~beej/guide/net/examples/select.c

16. http://www.ecst.csuchico.edu/~beej/guide/net/examples/selectserver.c

17. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/htonl.3.inc

18. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/htons.3.inc

19. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/ntohl.3.inc

20. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/ntohs.3.inc

21. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/inet_aton.3.inc
22. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/inet_addr.3.inc
23. http://linux.com.hk/man/showman.cgi?manpath=/man/man3/inet_ntoa.3.inc

24. http://linux.com.hk/man/showman.cgi?manpath=/man/man2/socket.2.inc

46

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.

Beej's Guide to Network Programming

http://linux.com.hk/man/showman.cgi?manpath=/man/man7/socket.7.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/bind.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/connect.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/listen.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/accept.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/send.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/recv.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/sendto.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/recvfrom.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/close.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/shutdown.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/getpeername.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/getsockname.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man3/gethostbyname.3.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man3/gethostbyaddr.3.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man3/getprotobyname.3.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/fcntl.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/select.2.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man3/perror.3.inc
http://linux.com.hk/man/showman.cgi?manpath=/man/man2/gettimeofday.2.inc
http://www.amazon.com/exec/obidos/redirect-home/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/013490012X/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/0130810819/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/0130183806/beejsguides-20
http://mww.amazon.com/exec/obidos/ASIN/0139738436/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/0138487146/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/0201633469/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/020163354X/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/0201634953/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/1565923227/beejsguides-20
http://www.amazon.com/exec/obidos/ASIN/0201563177/beejsguides-20

47

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.

Beej's Guide to Network Programming

http://www.cs.umn.edu/~bentlema/unix/
http://www.ibrado.com/sock-fag/
http://pandonia.canberra.edu.au/ClientServer/
gopher://gopher-chem.ucdavis.edu/11/Index/Internet_aw/Intro_the_Internet/intro.to.ip/
http://mww-is08859-5.stack.net/pages/faqgs/tcpip/tcpipfaq.html
http://www.cyberport.com/~tangent/programming/winsock/
http://www.rfc-editor.org/
http://www.rfc-editor.org/rfc/rfc768.txt
http://lwww.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://lwww.rfc-editor.org/rfc/rfc854.txt
http://www.rfc-editor.org/rfc/rfc951.txt

http://www.rfc-editor.org/rfc/rfc1350.txt

48

	Table of Contents
	1. Intro
	1.1. Audience
	1.2. Platform and Compiler
	1.3. Official Homepage
	1.4. Note for Solaris/SunOS Programmers
	1.5. Note for Windows Programmers
	1.6. Email Policy
	1.7. Mirroring
	1.8. Note for Translators
	1.9. Copyright and Distribution

	2. What is a socket?
	2.1. Two Types of Internet Sockets
	2.2. Low level Nonsense and Network Theory

	3. structs and Data Handling
	3.1. Convert the Natives!
	3.2. IP Addresses and How to Deal With Them

	4. System Calls or Bust
	4.1. socket()--Get the File Descriptor!
	4.2. bind()--What port am I on?
	4.3. connect()--Hey, you!
	4.4. listen()--Will somebody please call me?
	4.5. accept()--"Thank you for calling port 3490."
	4.6. send() and recv()--Talk to me, baby!
	4.7. sendto() and recvfrom()--Talk to me, DGRAM-style
	4.8. close() and shutdown()--Get outta my face!
	4.9. getpeername()--Who are you?
	4.10. gethostname()--Who am I?
	4.11. DNS--You say "whitehouse.gov", I say "198.137.240.92"

	5. Client-Server Background
	5.1. A Simple Stream Server
	5.2. A Simple Stream Client
	5.3. Datagram Sockets

	6. Slightly Advanced Techniques
	6.1. Blocking
	6.2. select()--Synchronous I/O Multiplexing
	6.3. Handling Partial send()s
	6.4. Son of Data Encapsulation

	7. More References
	7.1. man Pages
	7.2. Books
	7.3. Web References
	7.4. RFCs

	8. Common Questions
	9. Disclaimer and Call for Help

