ARM

 En la actualidad, ARM Ltd no hace procesadores, solo los diseña y licencia sus diseños a fabricantes (P. ej: Analog Devices, Atmel, Cirrus Logic, Hyundai, Intel, Oki, Plilips, Samsung, Sharp, Lucent, 3Comp, HP, IBM, Sony, etc.).

TDII - Microcontroladores - ARM

1

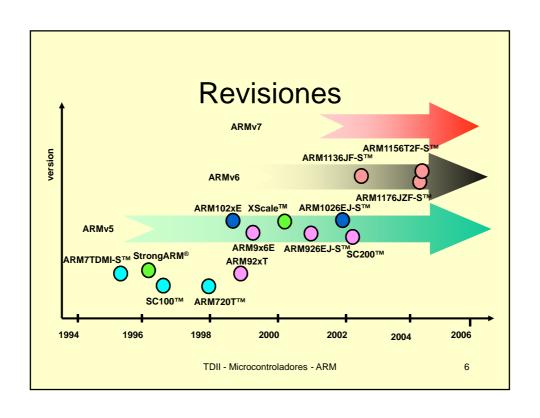
Características

- Computadora de 3 direcciones (registros) de 32 bits
- Ciclos de máquina de un solo reloj
- Extensión Thumb
- Excepciones vectorizadas
- Número de transistores: > 74,209 implica bajo consumo.
- Frecuencias de operación: 45 133 MHz.
- Bus de 32 bits para datos e instrucciones.
- Elevado rendimiento: hasta 120 MIPS.
- Elevada densidad de código (Diseñado para trabajar en C)

TDII - Microcontroladores - ARM

3

Características


- Se basa en Arquitectura RISC.
- 37 registros de 32 bits (16 disponibles).
- Registros 0 a 7 disponibles en todo momento
- Memoria caché (dependiendo de la aplicación)
- Estructura del bus tipo Von Neuman (ARM7), tipo Harvard (ARM9)

TDII - Microcontroladores - ARM

Risc

- Instrucciones de Procesamiento de datos
- Instrucciones de Transferencia de Datos
- Instrucciones de Control de Flujo

TDII - Microcontroladores - ARM

Datos e instrucciones

- Tipos de datos de 8/16/32 bits
- Todos las familias de procesadores ARM comparten el mismo conjunto de instrucciones

TDII - Microcontroladores - ARM

7

ARM tiene 7 modos básicos de operación

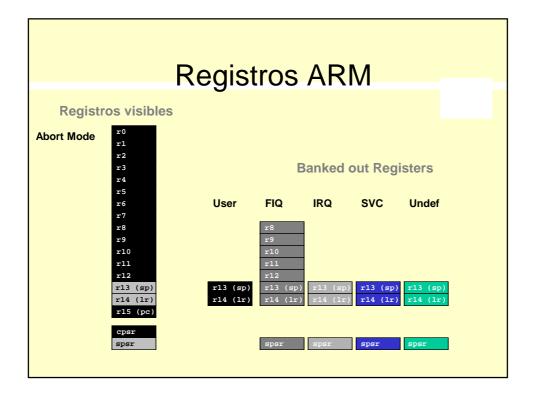
- User : Modo NO privelegiado para la mayoría de las aplicaciones
- FIQ: Se ingresa con una interrupción de alta prioridad (fast).
- IRQ : Se ingresa con una interrupción de baja prioridad (normal)
- Supervisor : Se ingresa en reset y cuando se ejecuta una SWI
- Abort : Se emplea para gerenciar violaciones en el acceso a memoria
- Undef: Se emplea para gerenciar instrucciones indefinidas
- System : Modo privilegiado que emplea los mismos registros que el modo usuario

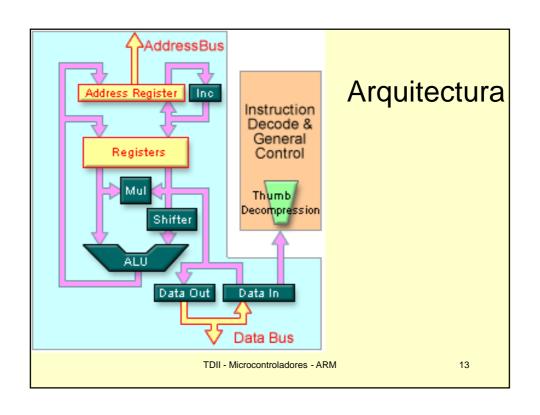
TDII - Microcontroladores - ARM

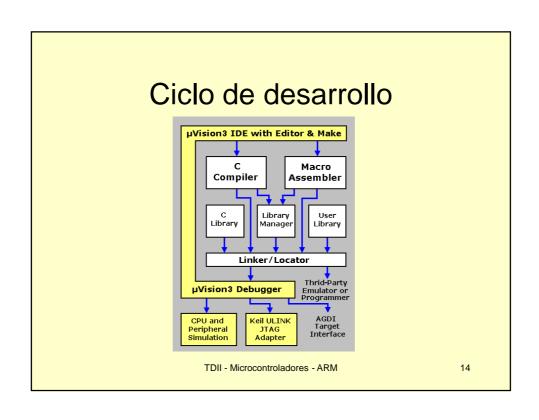
Tamaño de instrucciones y datos

- ARM es una arquitectura de 32-bits.
 - Byte significa 8 bits
 - Halfword significa 16 bits
 - Word significa 32 bits
- El repertorio de instrucciones
 - 32-bit ARM
 - 16-bit Thumb
- Los que tienen la extensión Jazelle ejecutan código Java

RISC


- Instrucciones conceptualmente simples.
- Transferencias Memoria/Registros exclusivamente LOAD/STORES.
- Las operaciones aritméticas son entre registros.
- Tamaño de instrucciones uniformes.
- Pocos formatos para las instrucciones.
- Conjunto de instrucciones ortogonal: poco o ningún traslape en la funcionalidad de las instrucciones.
- Pocos modos de direccionamiento.


TDII - Microcontroladores - ARM


Risc

- Casi todas las instrucciones se ejecutan en un ciclo de reloj.
- Tendencia a tener un gran número de registros.
- Arquitectura RISC predomina en los procesadores de elevado rendimiento.

TDII - Microcontroladores - ARM

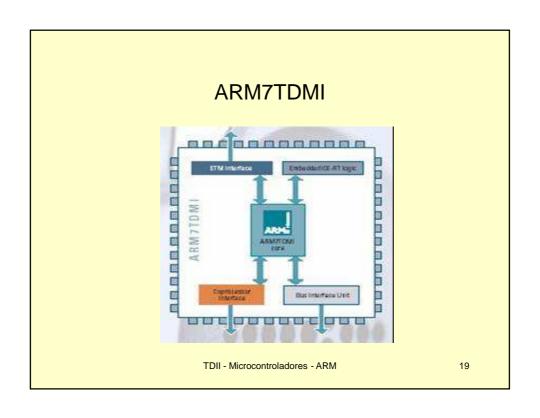
ARM7

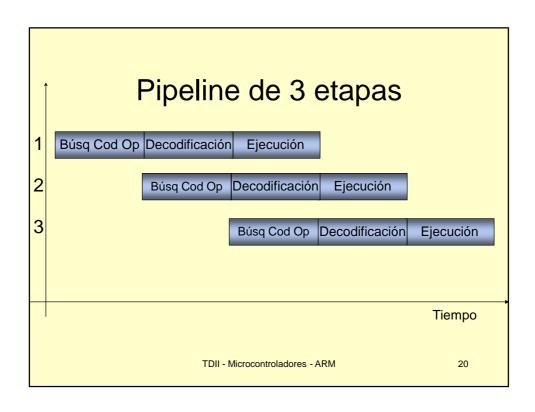
- Alimentación: 3.3 V y 5 V.
- Bajo consumo de potencia: 80 mW.
- Tecnología CMOS.
- Extensiones: Thumb, Jazelle.
- Los miembros de ARM7 tienen un coprocesador de interfaz que permite la conexión hasta con 16 coprocesadores más.

TDII - Microcontroladores - ARM

ARM7TDMI

- Es la versión mas utilizada de ARM7.
- ¿ TDMI ?
- T: "Thumb", soporta esta extensión.
- D: "Debug-interface".
- M: "Multiplier", hardware multiplicador.
- I: "Interrupt", interrupciones veloces.

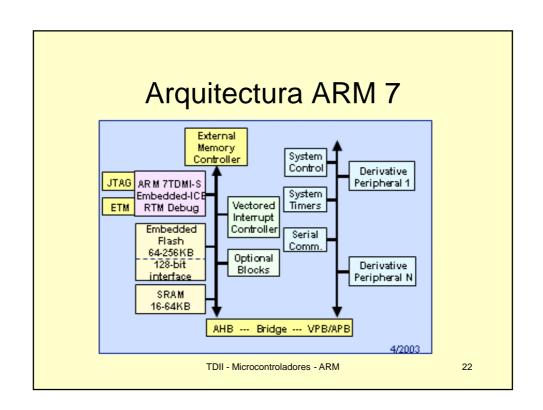

TDII - Microcontroladores - ARM

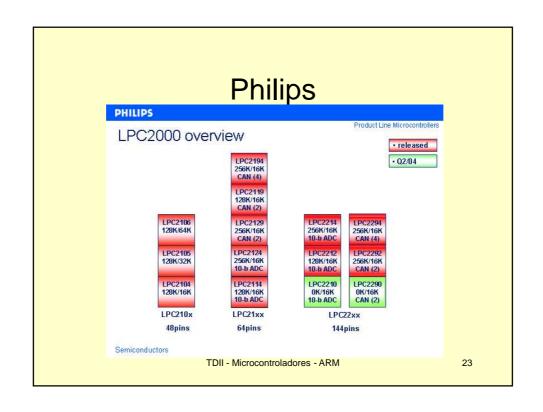

17

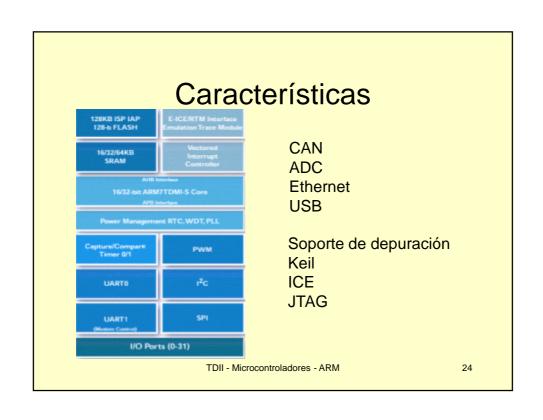
ARM7TDMI

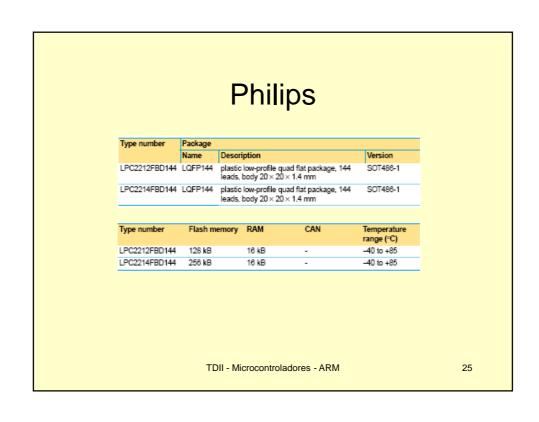
- Arquitectura de bus unificada.
- Lógica de depuración EmbeddedICE-RT.
- Interface ETM (Embedded Trace Macrocell).

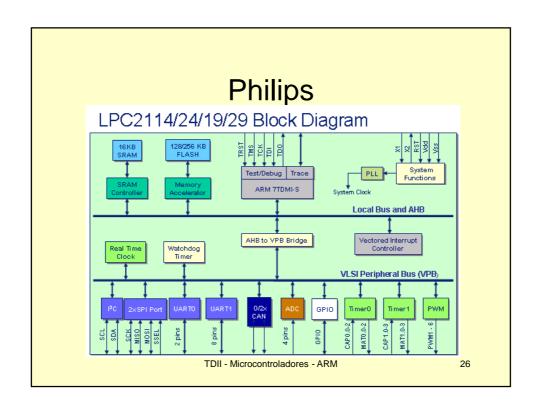
TDII - Microcontroladores - ARM

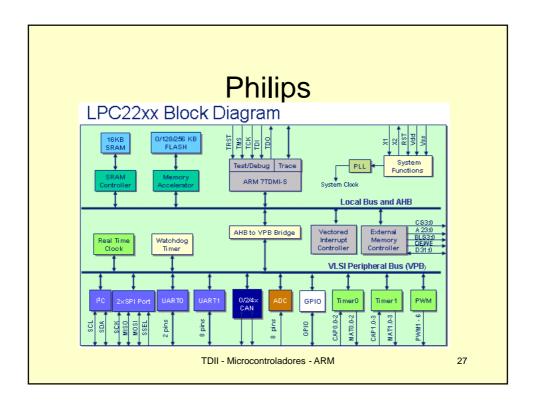





ARM7EJ-S


- Versión sintetizable, incorpora las bondades del ARM7TDMI.
- Soporta ejecución acelerada de Java y operaciones DSP.
- Emplea tecnología ARM Jazelle.


TDII - Microcontroladores - ARM



LPC22xx

- Núcleo a 1,8 V
- E/S a 3,3 V compatible TTL
- Icc = 35 mA
- Idle = 20 mA
- Sleep = 25 μA

TDII - Microcontroladores - ARM

Características

- 3 tipos de Interrupciones
 - FIQ
 - Vectorizadas
 - Interrupciones Generales
 - 32 entradas de interrupción
- PLL
 - Frec in = 10 25 MHz
 - Trabaja hasta 60 MHz

TDII - Microcontroladores - ARM

29

Comunicación Serie

- SPI
 - Hasta 2 canales que admiten master-slave
 - Veloc = 1/8 clock
- UART
 - 16550 compatible (con FIFO y flag de fifo llena).
 - Velocidad hasta 1/16 del clock

TDII - Microcontroladores - ARM

Comunicación Serie

- 12C
 - Hasta 750 kHz con 7 bits de direccionamiento
 - Bidireccional
 - Sin Maestro (multimaster)
- CAN

TDII - Microcontroladores - ARM

31

Timers

- De 32 bits con 4 registros de captura
- De 32 bits con 4 registros de coincidencia
- Watchdog que para debug no resetea al micro sino que genera excepciones

TDII - Microcontroladores - ARM

E/S

- 10 bits 0 a 3 V y 400 kmuestras/s
- 4 8 canales
- PWM de 32 bits con timer específico
- RTC
- 32 bits de E/S

TDII - Microcontroladores - ARM

33

ARM7

- Para sistemas que requieren manejo completo de memoria virtual y espacios de ejecución protegidos.
- Memoria caché de 8K
- MMU: unidad controladora de memoria.
- Para aplicaciones de plataforma abierta como Windows CE, Linux, Palm OS y Symbian OS.

TDII - Microcontroladores - ARM

ARM tiene 7 modos básicos de operación

- User : Modo NO privelegiado para la mayoría de las aplicaciones
- FIQ: Se ingresa con una interrupción de alta prioridad (fast).
- IRQ : Se ingresa con una interrupción de baja prioridad (normal)
- Supervisor : Se ingresa en reset y cuando se ejecuta una SWI
- Abort : Se emplea para gerenciar violaciones en el acceso a memoria
- Undef: Se emplea para gerenciar instrucciones indefinidas
- System : Modo privilegiado que emplea los mismos registros que el modo usuario

TDII - Microcontroladores - ARM

35

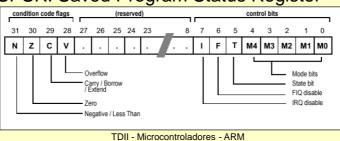
Repertorio de instrucciones

- Comparación
 - CMP r1,r2
 - CMN r1,r2
 - TST r1,r2
 - TEQ r1,r2

TDII - Microcontroladores - ARM

REGISTROS ARM7.

- 37 registros de 32 bits, 31 propósito general y 6 registros de estado.
- El número de registros disponibles y su estructura dependen del modo de operación
- 16 registros directamente accesibles (R0 R15).
- R13: puntero de pila (sp)
- R14: enlace a subrutina (Ir)
 - Guarda el valor de R15 cuando se ejecuta una instrucción BL


TDII - Microcontroladores - ARM

37

Program Status Register NZCV Indefinido Condition code flags • Bits de deshabilitrar Interrupciones. N = Resultadp Negativo de ALU - I = 1: Deshabilita IRQ. - Z = Ze ro resultado de ALU - F = 1: Deshabilita FIQ. - C = ALU produjo Carry V = ALU produjo oVerflow • T Bit - Arquitectura xT solamente - T = 0: Procesador en estado ARM • Sticky Overflow flag - Q flag - T = 1: Procesador en estado Thumb Solo Arquitectura 5TE/J - Indica si ocurrió saturación • Bits de Modo - Especifican el modo del procesador • J bit Architecture 5TEJ only - J = 1: Processor in Jazelle state

REGISTROS ARM7.

- R15: contador de programa
- R16: registro de estado (CPSR, Current Program Status Register)
- SPSR: Saved Program Status Register

39

Arquitectura User FIQ Undef Abort r1 User r2 mode 13 r0-r7, User User User User r4 r15, Thumb state mode mode mode mode 15 and r0-r12, r0-r12, Low registers r0-r12, r0-r12, rβ cpsr r15, r15, r15, r15, 17 and and and and г8 r8 opsr cpsr cpsr cpsr г9 г9 Thumb state r10 r10 High registers r11 r11 r12 r12 r13 (sp) r13 (sp) r13 (sp) r13 (sp) r13 (sp) r13 (sp) r14 (Ir) r14 (Ir) r14 (Ir) r14 (Tr) r14 (Ir) r14 (Ir) r15 (pc) cpsr spsr spsr Note: System mode uses the User mode register set

ARM vs. Thumb

ARM

- Instrucciones fijas de 32bit
- Instrucciones simples pueden realizar más funciones que una THUMB.
- Identical execution speed compared to THUMB from Flash/EE (CD > 0) and SRAM (CD >= 0)
- La tabla de vectores en ARM

THUMB

- Instrucciones fijas de 16bits
 - Aumentan la densidad de código
 - Aumentan la velocidad de ejecución
- Repertorio de instrucciones sencillo
- Conmuta a modo ARM en cada excepción
- Acceso limitado al banco de registros.

TDII - Microcontroladores - ARM

41

Program Counter (r15)

- When the processor is executing in ARM state:
 - All instructions are 32 bits wide
 - All instructions must be word aligned
 - Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as instruction cannot be halfword or byte aligned)
- When the processor is executing in Thumb state:
 - All instructions are 16 bits wide
 - All instructions must be halfword aligned
 - Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as instruction cannot be byte aligned)
- When the processor is executing in Jazelle state:
 - All instructions are 8 bits wide
 - Processor performs a word access to read 4 instructions at once
 TDII Microcontroladores ARM

Manejo de Excepciones

- Cuando se produce una excepción, el ARM:
 - Copia CPSR en SPSR_<modo>
 - Pone los bits del CPSR apropiados
 - · Cambia a modo ARM
 - · Cambia a modo excepción
 - Deshabilita interrupciones (Si es apropiado)
 - Almacena la dirección de retorno en LR <modo>
 - PC = Dirección del vector
- Para retornar, el exception handler necesita:
 - Restaurar CPSR de SPSR_<modo>
 - Restaurar PC de LR_<modo>

Solo en estadoARM

Vector Table

Vector table can be at 0xFFFF0000 on ARM720T and on ARM9/10 family devices

Excepciones

- Dir Prox Instrucción → LR
 - Si la excepción ocurre en estado ARM, PC+4 ó PC+8
 - Si la excepción ocurre en Thumb PC+2 ó PC+4
- Copia CPSR al correspondiente SPSR
- Fuerza los bits de modo del CPSR (según la excepción
- Fuerza a buscar con el PC la instrucción según el vector

TDII - Microcontroladores - ARM

Retorno de excepciones

	Saved LR value		Bassamandad	
Exception	ARM	Thumb	Recommended return instruction	Return point
Reset	-	-	-	After Reset, r14_svc value is Unpredictable.
Data Abort	PC + 8	PC + 8	SUBS PC, R14_abt, #8	Returns to aborted instruction.
FIQ	PC + 4	PC + 4	SUBS PC, R14_fiq, #4	Returns to interrupted instruction.
IRQ	PC + 4	PC + 4	SUBS PC, R14_irq, #4	Returns to interrupted instruction.
Prefetch Abort	PC + 4	PC + 4	SUBS PC, R14_abt, #4	Returns to aborted instruction.
Undefined instruction	PC + 4	PC + 2	MOVS PC, R14_und	Returns to instruction after Undefined instruction.
SWI instruction	PC + 4	PC + 2	MOVS PC, R14_svc	Returns to instruction after SWI instruction.

- •CPSR ← SPSR
- Limpia Interrupt Disable
 TDII Microcontroladores ARM

45

Vectores de excepción

Address	Exception	Mode on entry	I state on entry	F state on entry
0x00000000	Reset	Supervisor	Set	Set
0x00000004	Undefined Instruction	Undefined	Set	Unchanged
0x00000008	SWI	Supervisor	Set	Unchanged
0x0000000C	Prefetch Abort	Abort	Set	Unchanged
0x00000010	Data Abort	Abort	Set	Unchanged
0x00000014	Reserved	Reserved	-	-
0x00000018	IRQ	IRQ	Set	Unchanged
0x0000001C	FIQ	FIQ	Set	Set

TDII - Microcontroladores - ARM

Prioridades de las excepciones

Priority	Exception	
Highest	Reset	
	Data Abort	
	FIQ	
	IRQ	
	Prefetch Abort	
Lowest	Undefined Instruction and SWI	

TDII - Microcontroladores - ARM

47

Excepciones

- Dir Prox Instrucción → LR
 - Si la excepción ocurre en estado ARM, PC+4 ó PC+8
 - Si la excepción ocurre en Thumb PC+2 ó PC+4
- Copia CPSR al correspondiente SPSR
- Fuerza los bits de modo del CPSR (según la excepción
- Fuerza a buscar con el PC la instrucción según el vector

TDII - Microcontroladores - ARM

Retorno de excepciones

	Saved	LR value	Danamandad	
Exception	ARM	Thumb	Recommended return instruction	Return point
Reset	-	-	-	After Reset, r14_svc value is Unpredictable.
Data Abort	PC + 8	PC + 8	SUBS PC, R14_abt, #8	Returns to aborted instruction.
FIQ	PC + 4	PC + 4	SUBS PC, R14_fiq, #4	Returns to interrupted instruction.
IRQ	PC + 4	PC + 4	SUBS PC, R14_irq, #4	Returns to interrupted instruction.
Prefetch Abort	PC + 4	PC + 4	SUBS PC, R14_abt, #4	Returns to aborted instruction.
Undefined instruction	PC + 4	PC + 2	MOVS PC, R14_und	Returns to instruction after Undefined instruction.
SWI instruction	PC + 4	PC + 2	MOVS PC, R14_svc	Returns to instruction after SWI instruction.

- •CPSR ← SPSR
- Limpia Interrupt Disable
 TDII Microcontroladores ARM

49

Vectores de excepción

Address	Exception	Mode on entry	I state on entry	F state on entry
0x00000000	Reset	Supervisor	Set	Set
0x00000004	Undefined Instruction	Undefined	Set	Unchanged
0x00000008	SWI	Supervisor	Set	Unchanged
0x0000000C	Prefetch Abort	Abort	Set	Unchanged
0x00000010	Data Abort	Abort	Set	Unchanged
0x00000014	Reserved	Reserved	-	-
0x00000018	IRQ	IRQ	Set	Unchanged
0x0000001C	FIQ	FIQ	Set	Set

TDII - Microcontroladores - ARM

Prioridades de las excepciones

Priority	Exception	
Highest	Reset	
	Data Abort	
	FIQ	
	IRQ	
	Prefetch Abort	
Lowest	Undefined Instruction and SWI	

TDII - Microcontroladores - ARM

51

Instrucciones ARM7

- Instrucciones de 32 bits en el modo de operación nativo ARM: longitud de palabra de 32 bits
- Todas las instrucciones son condicionales
- En ejecución normal (incondicional), la condición AL (always) se establece en el campo condición
- En operaciones condicionales se selecciona una de las 14 condiciones
- 36 formatos de instrucciones

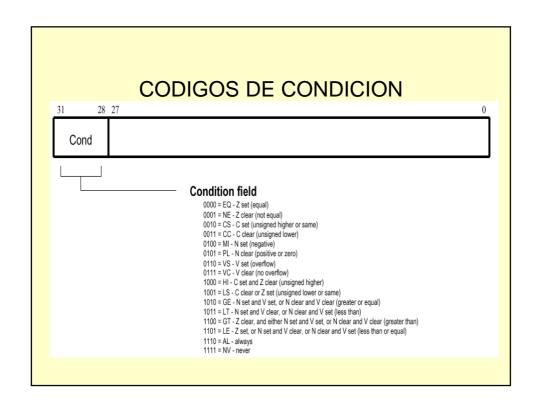
TDII - Microcontroladores - ARM

Instrucciones ARM7

- 11 tipos básicos de instrucciones.
- Dos de estos tipos emplean la ALU, el desplazador en barril y el multiplicador para ejecutar operaciones a alta velocidad sobre datos en los registros.
- Ejemplos: AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN, (Multiplicaciones) MUL, MLA, MULL, MLAL

TDII - Microcontroladores - ARM

53


Instrucciones de Procesamiento de Datos

- Consiste de:
 - ADD ADC SUB SBC **RSB** Aritmeticas: **RSC** AND ORR **EOR BIC** Logicas: Comparaciones: CMP CMN TST TEQ
 - Movimeinto Datos: MOV MVN
- Estas instrucciones operan sobre registros y NO en memoria.
- Sintaxis:

<Operación>{<cond>}{S} Rd, Rn, Operand2

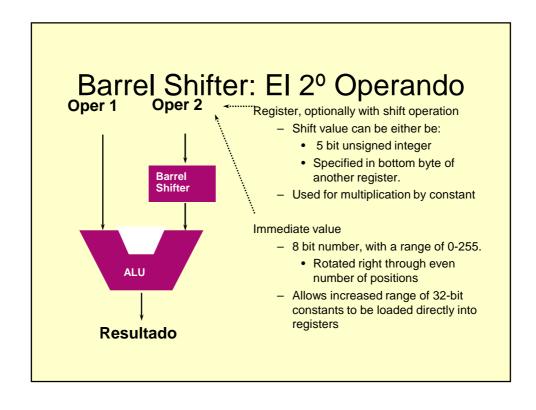
- Comparaciones sòlo afectan flags no especifican Rd
- Movimiento de datos no especifican Rn
- El segundo operando se envía a la ALU a través del desplazador en barril.

Ejemplos condicionales

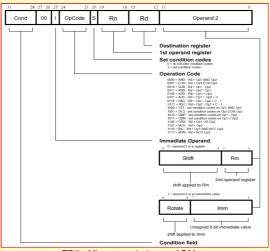
Fuente C

if (r0 == 0){ r1 = r1 + 1;

} else r2 = r2 + 1;


ARM instructions Condicional Incondicional

```
CMP r0, #0
 BNE else
 ADD r1, r1, #1
 B end
else
 ADD r2, r2, #1
```


- 5 instrucciones
- 5 palabras
- 5 o 6 ciclos

```
r0, #0
ADDEQ r1, r1, #1
ADDNE r2, r2, #1
```

- 3 instrucciones
- 3 palabras
- 3 ciclos

Procesamiento de Datos

TDII - Microcontroladores - ARM

59

Aritméticas

```
• ADD r1, r2, r3 ; r1 = r2 + r3
```

• ADC r1, r2, r3 ;
$$r1 = r2 + r3 + C$$

• SUB r1, r2, r3 ;
$$r1 = r2 - r3$$

• RSC r1, r2, r3 ;
$$r1 = r3 - r2 + C - 1$$

TDII - Microcontroladores - ARM

Repertorio de instrucciones

- Aritméticas
 - ADD r3,r2,#1
 - ADD r3,r2,r1, lsl #3 (lsr, asl, asr, ror, rrx)
 - ADD r5,r5,r3, LSL r2
 - MUL r4,r3,r2
 - -MLA r4,r3,r2,r1 ;r4:=(r3 x r2 + r1)
 - RSB r0,r0,r0, LSL #3
 - »; Multiplicar por 7

TDII - Microcontroladores - ARM

61

Multiplicar y Dividir

• 32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

```
- MUL r0, r1, r2 ; r0 = r1 * r2

- MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3
```

- 64-bit multiply instructions offer both signed and unsigned versions
 - For these instruction there are 2 destination registers

```
- [U|S]MULL r4, r5, r2, r3 ; r5:r4 = r2 * r3

- [U|S]MLAL r4, r5, r2, r3 ; r5:r4 = (r2 * r3) + r5:r4
```

- Most ARM cores do not offer integer divide instructions
 - Division operations will be performed by C library routines or inline shifts

Repertorio de instrucciones

- Lógicas
 - AND r0,r1,r2
 - ORR r0,r1,r2
 - EOR r0,r1,r2 ; r0:= r1 xor r2
 - -BIC r0,r1,r2 ; r0:= r1 and not r2
 - AND r8,r7,#&ff

TDII - Microcontroladores - ARM

Solo afectan los Flags

```
CMP r1, r2 ; cc por r1 - r2
CMN r1, r2 ; cc por r1 + r2
TST r1, r2 ; cc por r1 and r2
TEQ r1, r2 ; cc por r1 xor r2
```

TDII - Microcontroladores - ARM

65

Inmediatas

```
• ADD r3, r3,#1 ; r3 := r3 + 1
```

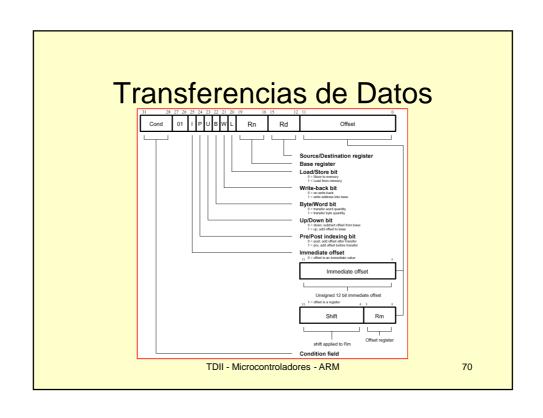
• AND r8, r7,#&ff ; r8 := r7[7:0]

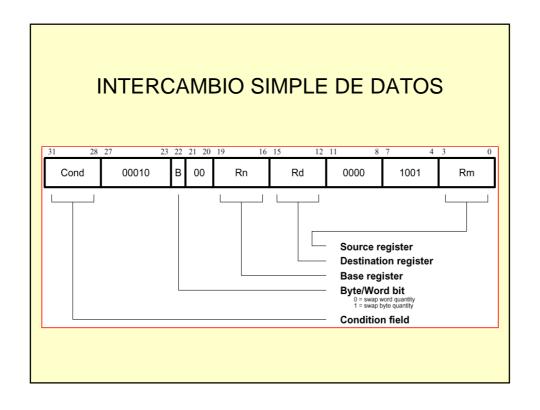
TDII - Microcontroladores - ARM

Desplazamientos

- ADD r3, r2, r1, LSL #3; r3 := r2 + 8 x r1
- ADD r5, r5, r3, LSL r2; r5 : = r5 + r3 x 2^{r2}

TDII - Microcontroladores - ARM


67


Modificando el CCR

```
ADDS r2, r2, r0; 32-bit carry out -> C..

ADC r3, r3, r1; .. and added into high word
```

TDII - Microcontroladores - ARM

Movimiento de Datos

```
    Movimiento
```

```
- MOV r0,r2
```

-MVN r0,r2; r0:=not r2

- LDR r0,[r1]

-STR r0,[r1]

- LDR r0,[r1], #4

- LDR r0,[r1,#4]!

TDII - Microcontroladores - ARM

Pre y post indexado

LDR r0,[r1,#4]; r0 := men32[r1+4]

LDR r0,[r1,#4]!; r0 := mem32[r1+4]; r1 := r1+4

TDII - Microcontroladores - ARM

73

Carga de constantes de 32 bits

- Se Genera una Seudoinstrucción
- LDR r0,=0xFF =>
- LDR r0,=0x55555555 => LDR r0,[PC,#Imm12]

• •

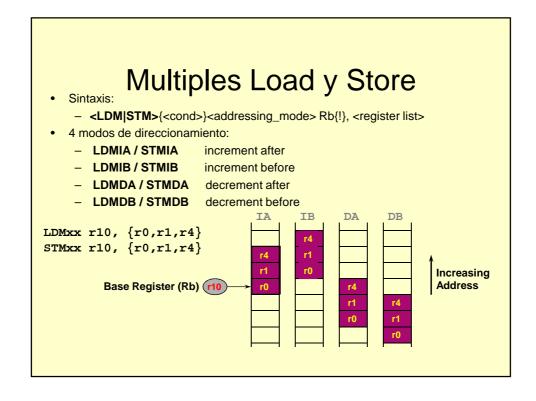
DCD 0x5555555

MOV r0,#0xFF

TDII - Microcontroladores - ARM

Load/Store

Arreglo de 25 palabras.


El compilador asocia y con r1. La base del array esta apuntado por r2. Implementar en assembler

```
array[10] = array[5] + y;
```

LDR r3, [r2, #5]; r3 = array[5]

ADD r3, r3, r1; r3 = array[5] + y

STR r3, [r2, #10]; array[5] + y = array[10]

Copia de tablas

```
ADR
                     r1, TABLE1
                                              ; r1 points to TABLE1
                   r2, TABLE2
r0, [r1]
r0, [r2]
r1, r1, #4
                                            ; r2 points to TABLE2
; get TABLE1 1st word
; copy into TABLE2
; step r1 on 1 word
          ADR
LOOP
          LDR
          STR
          ADD
          ADD
                     r2, r2, #4
                                              ; step r2 on 1 word
          ???
                                              ; if more go back to LOOP
TABLE1
                                               ; < source of data >
TABLE2
                                               ; < destination >
```

TDII - Microcontroladores - ARM

77

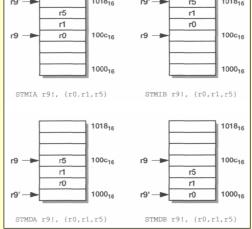
Load/Store - LDMIA/STMIA increment after - LDMIB/STMIB increment before - LDMDA/STMDA decrement after - LDMDB/STMDB decrement before LDMxx r10, {r0,r1,r4} STMxx r10, {r0,r1,r4} r1 r0 Increasing Base Register (Rb) (r10) **Address** r0 r4 78 TDII - Microcontroladores - ARM

Tablas y registros

```
LDMIA r1, {r0,r2,r5} ; r0 := mem<sub>32</sub>[r1] ; r2 := mem<sub>32</sub>[r1 + 4] ; r5 := mem<sub>32</sub>[r1 + 8]
```

TDII - Microcontroladores - ARM

79


Uso de la Pila

```
LDMIA r0!, {r2-r9} STMIA r1, {r2-r9}
```

```
STMFD r13!, {r2-r9}
LDMIA r0!, {r2-r9}
STMIA r1, {r2-r9}
LDMFD r13!, {r2-r9}
```

TDII - Microcontroladores - ARM

Transferencia de Registros

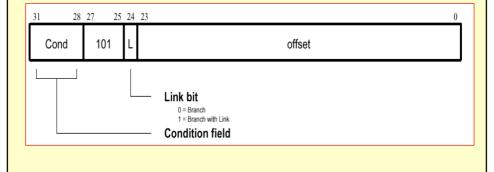
TDII - Microcontroladores - ARM

81

Copia de bloques y stack

		Ascending		Descending	
		Full	Empty	Full	Empty
Increment	Before	STMIB STMFA			LDMIB LDMED
	After		STMIA STMEA	LDMIA LDMFD	
Decrement	Before		LDMDB LDMEA	STMDB STMFD	
	After	LDMDA LDMFA			STMDA STMED

TDII - Microcontroladores - ARM


Instrucciones ARM7

- Instrucciones de salto (Branching): BX, B, BL
- BX: Branch and eXchange, salto con cambio de conjunto de instrucciones ARM < -- > Thumb
- B: salto con desplazamiento de 24 bits con signo
- BL: enlace (link) PC -> R14
- Instrucciones de transferencia de datos: LDR, STR, LDRH, STRH, LDRSB, LDRSH, LDM, STM, SWP.

TDII - Microcontroladores - ARM

83

INSTRUCCIONES DE SALTO: B, BL

Control de flujo

Branch	Interpretation	Normal uses		
B BAL Unconditional Always		Always take this branch		
		Always take this branch		
BEQ	Equal	Comparison equal or zero result		
BNE	Not equal	Comparison not equal or non-zero result		
BPL	Plus	Result positive or zero		
BMI	Minus	Result minus or negative		
BCC	Carry clear	Arithmetic operation did not give carry-out		
BLO	Lower	Unsigned comparison gave lower		
BCS	Carry set Higher	r Arithmetic operation gave carry-out		
BHS	or same	Unsigned comparison gave higher or same		
BVC	Overflow clear	Signed integer operation; no overflow occurred		
BVS	Overflow set	Signed integer operation; overflow occurred		
BGT	Greater than	Signed integer comparison gave greater than		
BGE	Greater or equal	Signed integer comparison gave greater or equal		
BLT	Less than	Signed integer comparison gave less than		
BLE	Less or equal	Signed integer comparison gave less than or equal		
BHI	Higher	Unsigned comparison gave higher		
BLS	Lower or same	Unsigned comparison gave lower or same		

TDII - Microcontroladores - ARM

85

Ejemplo

CMP r0,#5

BEQ SALTO

ADD r1,r1,r0

SUB r1,r1,r2 ; r0:=r1 + r0 - r2

Salto:


CMP r0,#5

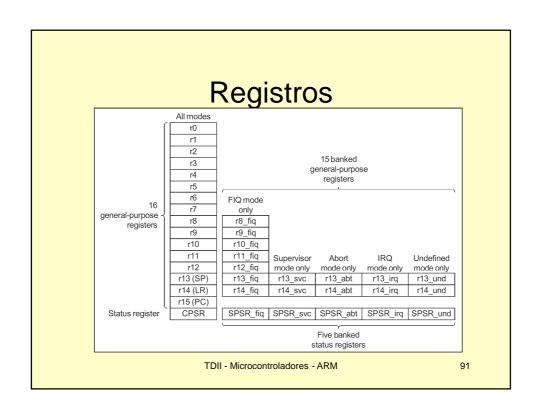
ADDNE r1,r1,r0

SUBNE $r_{1,r_{1,r_{2}}}$; $r_{0:=r_{1}} + r_{0} - r_{2}$

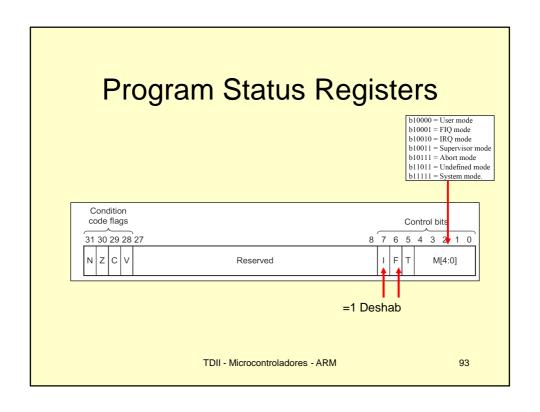
TDII - Microcontroladores - ARM

Subrutinas BL subru ... Subru: mov pc,r14

Instrucciones ARM7


- Instrucciones de excepciones: SWI, SoftWare Interrupt.
- Instrucciones del Coprocesador: CDP, LDC, STC, MRC, MCR.
- ARM no ejecuta estas instrucciones deja al coprocesador pero manipulación de ellas.

TDII - Microcontroladores - ARM


89

Modos

Medee				
Modo	Descripción			
User	Para ejecución normal de aplicación			
FIQ	Transferencia de datos de alta velocidad			
IRQ	Manejo general de Interrupciones			
Supervisor	Modo protegido para el sistema operativo			
Abort	Para implementar memoria virtual o protección de memoria			
Abort	Emulación por software de coprocesadores			
System	Para correr tareas privilegiadas del sistema operativo			
_	TDII - Microcontroladores - ARM 90			

Registros					
Modo	Indentificador de modo de bancos de registros				
User	_usrb				
Fast interrupt	_fiq				
Interrupt	_irq				
Supervisor	_svc				
Abort	_abt				
System	_usr				
Undefined	_und				
TDII - Microc	ontroladores - ARM 92				

TIPOS DE DATOS.

- Emplea un bus de datos y un bus de direcciones de 32 bits.
- Tipos de datos que soporta el procesador: bytes (8 bits) y palabras (32 bits).
- Las instrucciones son exclusivamente palabras.
- Las transferencias pueden ser bytes o palabras.

TIPOS DE CICLOS DE TRANSFERENCIA A MEMORIA.

- Transferencia de registro del coprocesador: ARM7 desea usar el bus de datos para comuicarse con un coprocesador pero no requiere ninguna acción del sistema de memoria.
- Estos 4 tipos de ciclos son visibles a la memoria a través de las lineas de control nMREQ y SEQ.

COPROCESADORES.

- La funcionalidad de ARM7 se incrementa agregando hasta 16 coprocesadores externos.
- nCPI, CPA (coporocesador ausente), CPB (coporocesador ocupado), señales que controlan la interfaz con los coprocesadores; CPA y CPB siempre activas excepto cuando el coprocesador está en "handshaking".
- Cada coprocesador tiene un único número dentro de un sistema y recibe una copia de la instrucción.
- Inspeccionando el campo CP#, cada coprocesador determina si la instrucción le corresponde.

COPROCESADORES.

- Cada coprocesador tiene hasta 16 registros privados.
- Emplean aquitectura LOAD/STORE.
- Acoplados al bus de memoria ARM.
- "Observan" el tráfico de instrucciones del bus.

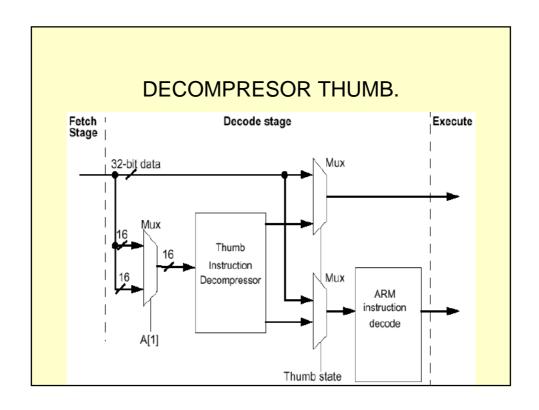
Little endian data format Byte 3 at Byte 2 at Byte 1 at Byte 0 at Word at address C address C address F address E address D Halfword 1 at address E Halfword 0 at address C Byte 3 at Byte 2 at Byte 1 at Byte 0 at Word at address 8 address B address A address 9 address 8 Halfword 1 at address A Halfword 0 at address 8 Byte 3 at Byte 2 at Byte 1 at Byte 0 at Word at address 4 address 7 address 6 address 5 address 4 Halfword 1 at address 6 Halfword 0 at address 4 Byte 3 at Byte 2 at Byte 1 at Byte 0 at Word at address 0 address 3 address 2 address 1 address 0 Halfword 1 at address 2 Halfword 0 at address 0 TDII - Microcontroladores - ARM 98

Big Endian data format

	<u> </u>			
31 24	23 16	15 8	7 0	_
Byte 0 at address F	Byte 1 at address E	Byte 2 at address D	Byte 3 at address C	Word at address C
Halfword 0 at address E		Halfword 1 at address C		
Byte 0 at address B	Byte 1 at address A	Byte 2 at address 9	Byte 3 at address 8	Word at address 8
Halfword 0 at address A Halfword 1 at address			at address 8	
Byte 0 at address 7	Byte 1 at address 6	Byte 2 at address 5	Byte 3 at address 4	Word at address 4
Halfword 0	at address 6	Halfword 1 at address 4		•
Byte 0 at address 3	Byte 1 at address 2	Byte 2 at address 1	Byte 3 at address 0	Word at address 0
Halfword 0				

TDII - Microcontroladores - ARM

99

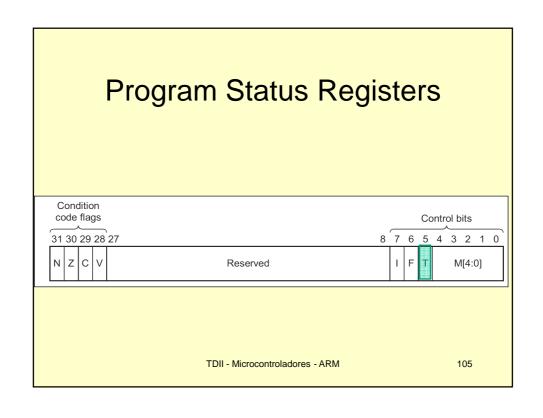

ARM7

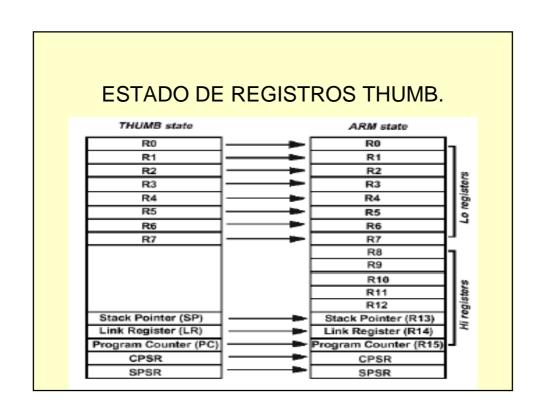
- Para sistemas que requieren manejo completo de memoria virtual y espacios de ejecución protegidos.
- Memoria caché de 8K
- MMU: unidad controladora de memoria.
- Para aplicaciones de plataforma abierta como Windows CE, Linux, Palm OS y Symbian OS.

TDII - Microcontroladores - ARM

EXTENSION "THUMB"

- Representación comprimida de 16 bits del ISA de ARM.
- Con el objetivo de incrementar: densidad de código y rendimiento, en algunos casos.
- No es una arquitectura completa, es un subconjunto del ISA de ARM.

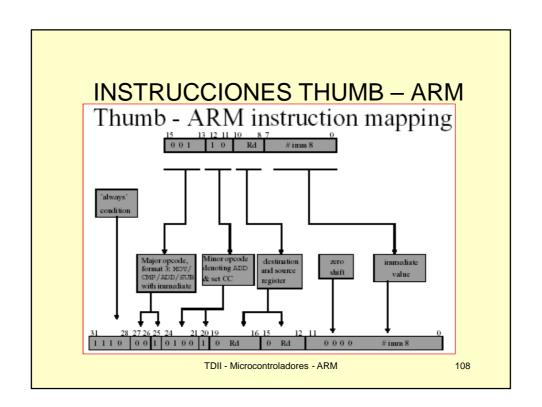



EXTENSION "THUMB".

- Thumb comprime las instrucciones de ARM a una longitud de palabra de 16 bits, ahorrándose del 35 al 40 % en memoria, comparado con un conjunto de instrucciones de 32 bits.
- Los registros se mantienen como de 32 bits, pero solo la mitad de ellos es empleado.
- Se emplea un decodificador de instrucciones Thumb en el pipeline.
- Solo los registros de la parte mas baja se emplean, los registros de la parte alta se establecen a cero.

CAMBIANDO DE MODO: ARM < -- > THUMB

- Si solo se emplea el bus de datos de 16 bits, la velocidad de ejecución de código ARM nativo disminuye significativamente.
- Para retornar de Thumb a ARM nativo, se reestablece T-flag y se ejecuta BX a la dirección deseada.



CONJUNTO DE INSTRUCCIONES THUMB.

- La longitud de palabra se reduce a 16 bits.
- Las instrucciones siguen su propia sintaxis, pero cada instrucción tiene su contraparte en ARM nativo.
- Debido a la reducción de bits, se pierde cierta funcionalidad.
- Existen 19 formatos diferentes de instrucción Thumb.

TDII - Microcontroladores - ARM

107

SUMARIO: CONJUNTO DE INSTRUCCIONES THUMB.

APLICACIONES DE THUMB.

- Para optimizar el costo y el consumo de potencia.
- Para rutinas de control largas y no críticas.

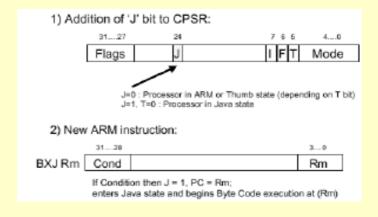
TDII - Microcontroladores - ARM

CONJUNTO DE INSTRUCCIONES THUMB.

- La longitud de palabra se reduce a 16 bits.
- Las instrucciones siguen su propia sintaxis, pero cada instrucción tiene su contraparte en ARM nativo.
- Debido a la reducción de bits, se pierde cierta funcionalidad.
- Existen 19 formatos diferentes de instrucción Thumb.

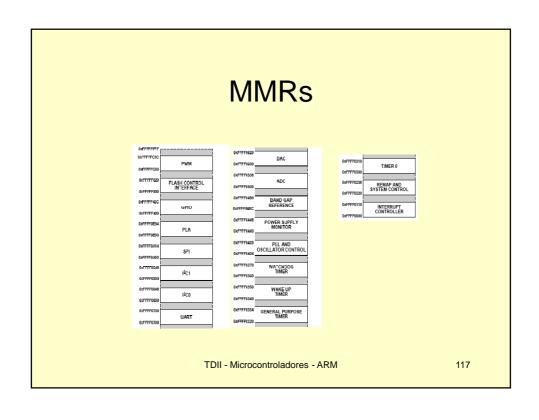
EXTENSION JAZELLE.

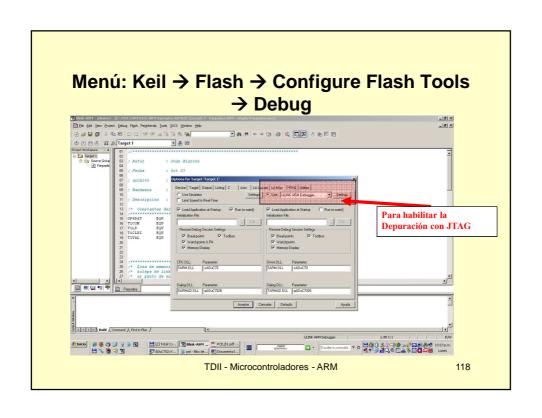
- El uso de aplicaciones basadas en tecnología Java se está incrementando.
- ARM implementó su extensión Jazelle.
- Las soluciones típicas en Java descansan en implementaciones de software o hardware.
- Implementaciones de software requieren el uso de más componentes de memoria => mayor consumo de potencia.
- Soluciones de hardware requieren acoplar dispositivos al procesador => costo adicional en silicio.

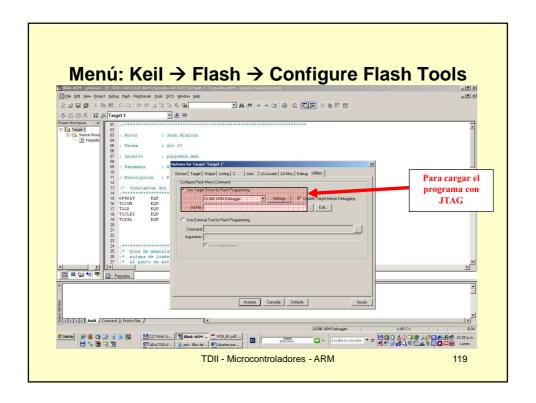

EXTENSION JAZELLE.

- La extensión Jazelle implementa ambas soluciones sin requerir hardware o memoria adicional.
- Mejora el rendimiento hasta 8 veces de soluciones basadas en software y hasta el doble de soluciones basadas en co-procesadores => poder correr aplicaciones Java complejas en sistemas basados en nucleos ARM de bajo consumo de potencia.
- Permite a los desarrolladores correr en un solo procesador aplicaciones Java, junto con los sistemas operativos establecidos y código de aplicación.

EXTENSION JAZELLE.

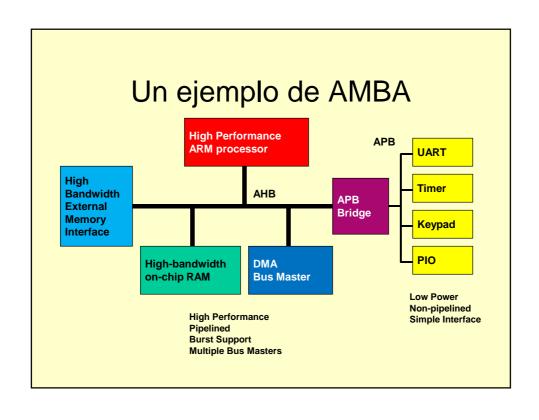

- En la práctica, es agregar un tercer conjunto de instrucciones al núcleo del procesador ARM (Jazelle, ARM y Thumb).
- Se crea un nuevo estado del procesador: estado Java, el procesador se comporta como un procesador Java.
- El cambio entre estados: Java y ARM/Thumb, es por medio del control del sistema operativo.
- 140 intrucciones son ejecutadas directamente en hardware, el resto (94) se ejecutan por simulación por múltiples instrucciones ARM.

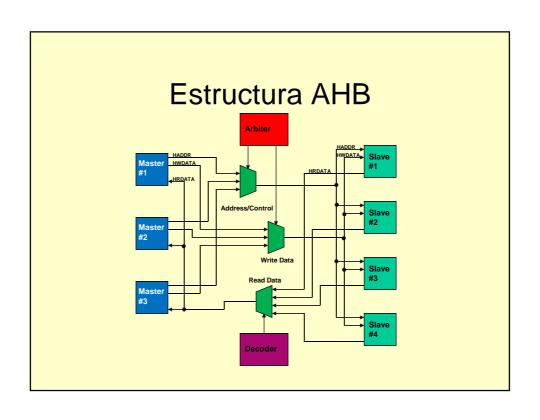

NUEVO MODO DE OPERACIÓN JAVA.



Program Counter (r15)

- When the processor is executing in ARM state:
 - All instructions are 32 bits wide
 - All instructions must be word aligned
 - Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as instruction cannot be halfword or byte aligned)
- When the processor is executing in Thumb state:
 - All instructions are 16 bits wide
 - All instructions must be halfword aligned
 - Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as instruction cannot be byte aligned)
- When the processor is executing in Jazelle state:
 - All instructions are 8 bits wide
 - Processor performs a word access to read 4 instructions at once



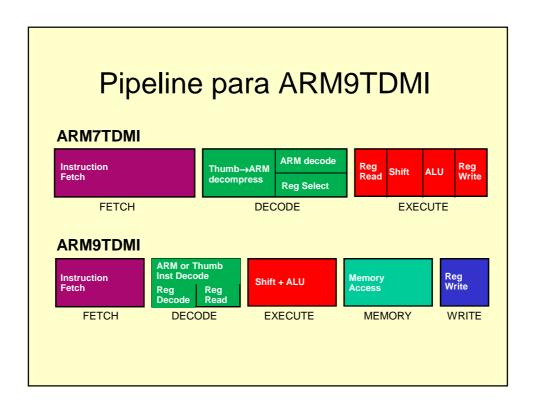


ESTANDAR AMBA.

- Estándar de especificación de buses de conexión.
- Detalla la estrategia para interconexión y manejo de bloques funcionales que conforman un SoC.
- ASB: AMBA System Bus.
- AHB: Advanced High performance Bus, bus de ancho de banda grande para la conexión de bloques funcionales de alta velocidad, tales como la memoria.
- APB: Advanced Peripherial Bus, bus más simple para conectar periféricos de propósito general.

ARM9

- Es una familia constituida por los procesadores ARM920T, ARM922T Y ARM940T.
- Construida en base al procesador ARM9TDMI.
- Set de instrucciones de 16 Bits.
- El procesador es RISC de 32 Bits.
- Buffer de escritura de 8 entradas.


TDII - Microcontroladores - ARM

123

ARM9

- Pipeline de 5 estados que alcanza 1.1 MIPS/MHz, expandible a 300 MIPS.
- Bus de interface AMBA de 32 Bits.
- MMU (Memory Management Unit) que soporta Windows CE, Symbian OS, Linux, Palm OS.
- MPU (Memory Protection Unit) soportando una amplia gama de sistemas operativos en tiempo real, incluyendo VxWORKS.

TDII - Microcontroladores - ARM

ARM920T Y ARM922T

- Macrocelulas basadas en el ARM9TDMI RISC de 32 Bits convenientes para una gama de aplicaciones basadas en plataforma OS, ofrecen caches para instrucciones y datos, son idénticos pero se diferencian en que uno es de 16k y el otro de 8k.
- MMU permitiendo soporte para otros sistemas operativos importantes.

TDII - Microcontroladores - ARM

APLICACIONES

- En las próximas generaciones de Teléfonos, comunicadores y PDA'S.
- En procesadores 3G.
- En dispositivos basados en Plataforma OS.
- Cámaras digitales.
- Decodificadores de Audio y video.
- En la industria automotriz.

TDII - Microcontroladores - ARM