ARM

- Advanced RISC Machines Ltd.
- Compañía inglesa Dedicada al desarrollo de procesadores RISC, software y tecnologías relacionadas, fundada en 1990 por Apple Computer, Acorn Computer Group y VLSI Technology.
- Cubre aprox. el 75 % del mercado mundial en microcontroladores RISC
- Costos actuales (a igualdad de prestaciones) inferior a 8051.

TDII - Microcontroladores - ARM

•

ARM

 En la actualidad, ARM Ltd no hace procesadores, solo los diseña y licencia sus diseños a fabricantes (P. ej: Analog Devices, Atmel, Cirrus Logic, Hyundai, Intel, Oki, Plilips, Samsung, Sharp, Lucent, 3Comp, HP, IBM, Sony, etc.).

TDII - Microcontroladores - ARM

Características

- Computadora de 3 direcciones (registros) de 32 bits
- Single clock machines cycles
- Extensión Thumb
- Excepciones vectorizadas
- Número de transistores: > 74,209 implica bajo consumo.
- Frecuencias de operación: 45 133 MHz.
- Bus de 32 bits para datos e instrucciones.
- Elevado rendimiento: hasta 120 MIPS.
- Elevada densidad de código (Diseñado para trabajar en C)

TDII - Microcontroladores - ARM

3

Características

- Se basa en Arquitectura RISC.
- 37 registros de 32 bits (16 disponibles).
- Registros 0 a 7 disponibles en todo momento
- Memoria caché (dependiendo de la aplicación)
- Estructura del bus tipo Von Neuman (ARM7), tipo Harvard (ARM9)

TDII - Microcontroladores - ARM

ARM

- Tipos de datos de 8/16/32 bits
- 6 modos de operación: usr y sys, fiq, irq, svc, abt, sys, und.
- Todos las familias de procesadores ARM comparten el mismo conjunto de instrucciones

TDII - Microcontroladores - ARM

5

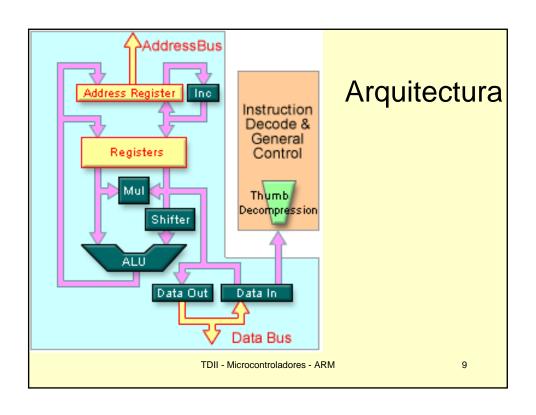
Risc

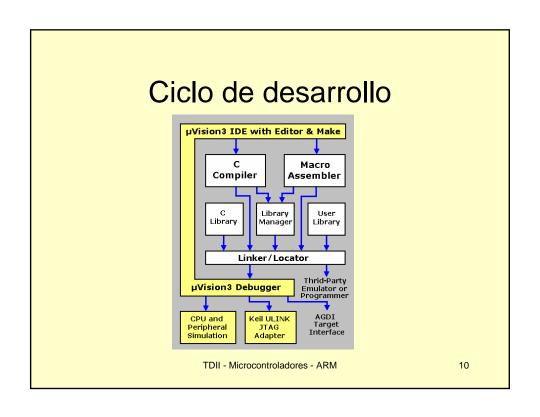
- Instrucciones de Procesamiento de datos
- Instrucciones de Transferencia de Datos
- Instrucciones de Control de Flujo

TDII - Microcontroladores - ARM

RISC

- Instrucciones conceptualmente simples.
- Transferencias Memoria/Registros exclusivamente LOAD/STORES.
- Las operaciones aritméticas son entre registros.
- Tamaño de instrucciones uniformes.
- Pocos formatos para las instrucciones.
- Conjunto de instrucciones ortogonal: poco o ningún traslape en la funcionalidad de las instrucciones.
- Pocos modos de direccionamiento.

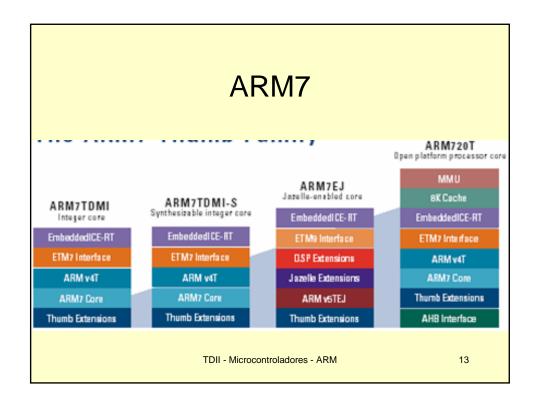

TDII - Microcontroladores - ARM


7

Risc

- Casi todas las instrucciones se ejecutan en un ciclo de reloj.
- Tendencia a tener un gran número de registros.
- Arquitectura RISC predomina en los procesadores de elevado rendimiento.

TDII - Microcontroladores - ARM



ARM7

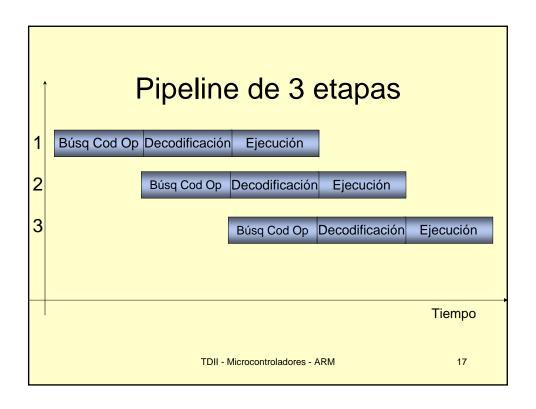
- Alimentación: 3.3 V y 5 V.
- Bajo consumo de potencia: 80 mW.
- Tecnología CMOS.
- Extensiones: Thumb, Jazelle.
- Los miembros de ARM7 tienen un coprocesador de interfaz que permite la conexión hasta con 16 coprocesadores más.

TDII - Microcontroladores - ARM

ARM7TDMI

- Es la versión mas utilizada de ARM7.
- ¿ TDMI ?
- T: "Thumb", soporta esta extensión.
- D: "Debug-interface".
- M: "Multiplier", hardware multiplicador.
- I: "Interrupt", interrupciones veloces.

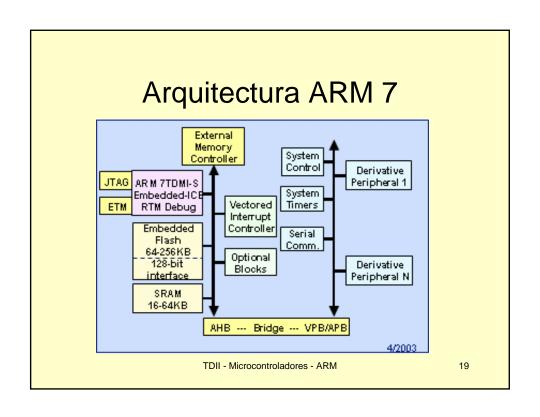
TDII - Microcontroladores - ARM

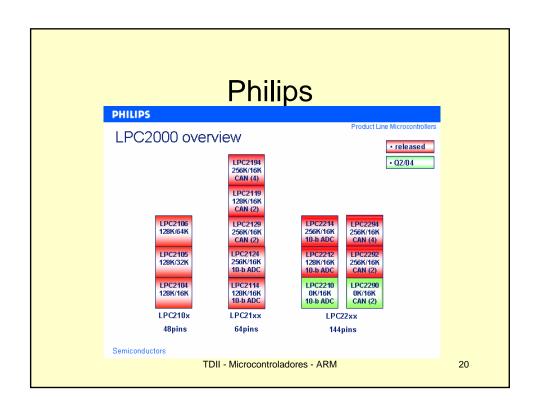

ARM7TDMI

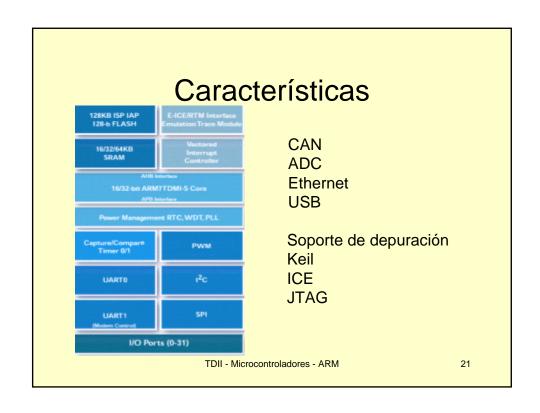
- Arquitectura de bus unificada.
- Lógica de depuración EmbeddedICE-RT.
- Interface ETM (Embedded Trace Macrocell).

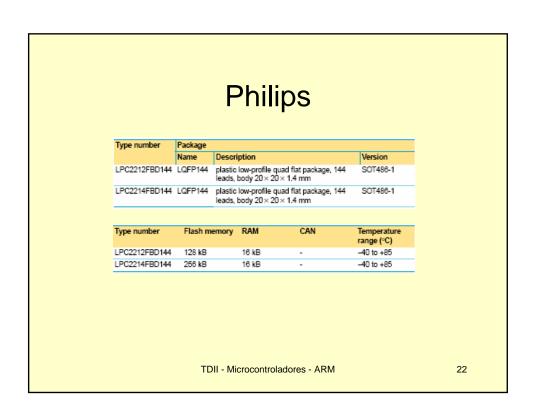
TDII - Microcontroladores - ARM

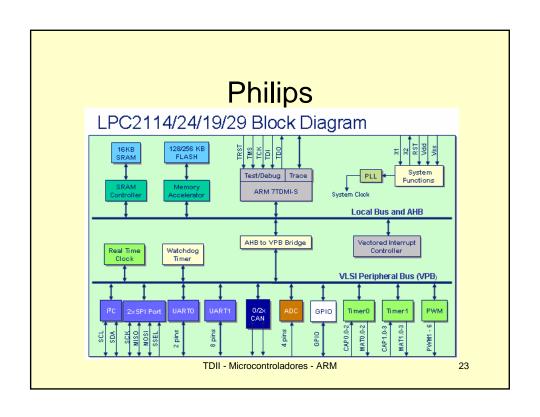
15

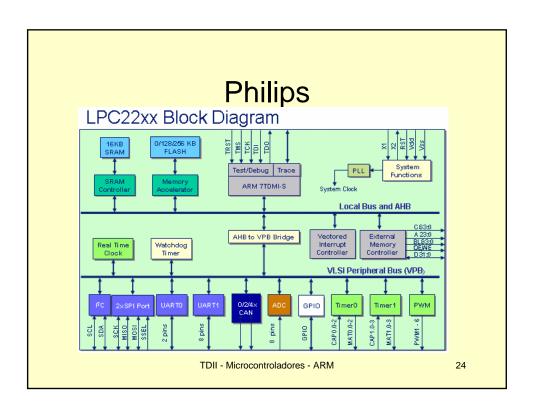

ARM7TDMI TOTAL Microcontroladores - ARM ARM7TDMI




ARM7EJ-S


- Versión sintetizable, incorpora las bondades del ARM7TDMI.
- Soporta ejecución acelerada de Java y operaciones DSP.
- Emplea tecnología ARM Jazelle.


TDII - Microcontroladores - ARM



LPC22xx

- Núcleo a 1,8 V
- E/S a 3,3 V compatible TTL
- Icc = 35 mA
- Idle = 20 mA
- Sleep = 25 μA

TDII - Microcontroladores - ARM

25

Características

- 3 tipos de Interrupciones
 - FIQ
 - Vectorizadas
 - Interrupciones Generales
 - 32 entradas de interrupción
- PLL
 - Frec in = 10 25 MHz
 - Trabaja hasta 60 MHz

TDII - Microcontroladores - ARM

Comunicación Serie

- SPI
 - Hasta 2 canales que admiten master-slave
 - Veloc = 1/8 clock
- UART
 - 16550 compatible (con FIFO y flag de fifo llena).
 - Velocidad hasta 1/16 del clock

TDII - Microcontroladores - ARM

27

Comunicación Serie

- I2C
 - Hasta 750 kHz con 7 bits de direccionamiento
 - Bidireccional
 - Sin Maestro (multimaster)
- CAN

TDII - Microcontroladores - ARM

Timers

- De 32 bits con 4 registros de captura
- De 32 bits con 4 registros de coincidencia
- Watchdog que para debug no resetea al micro sino que genera excepciones

TDII - Microcontroladores - ARM

29

E/S

- 10 bits 0 a 3 V y 400 kmuestras/s
- 4 8 canales
- PWM de 32 bits con timer específico
- RTC
- 32 bits de E/S

TDII - Microcontroladores - ARM

ARM7

- Para sistemas que requieren manejo completo de memoria virtual y espacios de ejecución protegidos.
- Memoria caché de 8K
- MMU: unidad controladora de memoria.
- Para aplicaciones de plataforma abierta como Windows CE, Linux, Palm OS y Symbian OS.

TDII - Microcontroladores - ARM

31

MODOS DE OPERACIÓN ARM7.

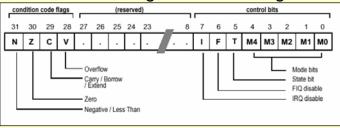
- User (usr): estado normal de ejecución de programas
- FIQ (fiq): estado para transferencias de datos (fast irq, transferencias tipo DMA)
- IRQ (irg): para dar servivicio a interrupciones generales
- Supervisor (svc): modo protegido para soporte del sistema operativo
- Abort mode (abt): usado cuando se aborta el ciclo fetch de datos o instrucciones.
- Undefined (und): usado cuando una instrucción indefinida es traida.

TDII - Microcontroladores - ARM

- Comparación
 - CMP r1,r2
 - CMN r1,r2
 - TST r1,r2
 - TEQ r1,r2

TDII - Microcontroladores - ARM

33


REGISTROS ARM7.

- 37 registros de 32 bits, 31 propósito general y 6 registros de estado.
- El número de registros disponibles y su estructura dependen del modo de operación
- 16 registros directamente accesibles (R0 R15).
- R13: puntero de pila (sp)
- R14: enlace a subrutina (Ir)
 - Guarda el valor de R15 cuando se ejecuta una instrucción BL

TDII - Microcontroladores - ARM

REGISTROS ARM7.

- R15: contador de programa
- R16: registro de estado (CPSR, Current Program Status Register)
- SPSR: Saved Program Status Register

TDII - Microcontroladores - ARM

35

Arquitectura FIQ IRQ Undef Abort User гO r1 User 12 mode г3 r0-r7, User User User User r4 r15, Thumb state mode mode mode mode 15 and Low registers r0-r12, r0-r12, r0-r12, r0-r12, rβ cpsr r15, r15, r15, r15, r7 and and and and 18 18 cpsr cpsr cpsr cpsr ۴9 r10 Thumb state r10 High registers r11 r11 r12 r12 r13 (sp) r14 (Tr) r13 (sp) r14 (Tr) r13 (sp) r14 (Tr) r13 (sp) r13 (sp) r13 (sp) r14 (Ir) r14 (Ir) r14 (Tr) r15 (pc) cpsr spsr spsr Note: System mode uses the User mode register set

ARM vs. Thumb

ARM

- Instrucciones fijas de 32bit
- Instrucciones simples pueden realizar más funciones que una THUMB.
- Identical execution speed compared to THUMB from Flash/EE (CD > 0) and SRAM (CD >= 0)
- La tabla de vectores en ARM

THUMB

- Instrucciones fijas de 16bits
 - Aumentan la densidad de código
 - Aumentan la velocidad de ejecución
- Repertorio de instrucciones sencillo
- Conmuta a modo ARM en cada excepción
- Acceso limitado al banco de registros.

TDII - Microcontroladores - ARM

37

Instrucciones ARM7

- Instrucciones de 32 bits en el modo de operación nativo ARM: longitud de palabra de 32 bits
- Todas las instrucciones son condicionales
- En ejecución normal (incondicional), la condición AL (always) se establece en el campo condición
- En operaciones condicionales se selecciona una de las 14 condiciones
- 36 formatos de instrucciones

TDII - Microcontroladores - ARM

39

Instrucciones ARM7

- 11 tipos básicos de instrucciones.
- Dos de estos tipos emplean la ALU, el desplazador en barril y el multiplicador para ejecutar operaciones a alta velocidad sobre datos en los registros.
- Ejemplos: AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, TST, TEQ, CMP, CMN, ORR, MOV, BIC, MVN, (Multiplicaciones) MUL, MLA, MULL, MLAL

TDII - Microcontroladores - ARM

Cond	0	0	-	()pc	000	le	S		Rn	Rn Rd		Γ	Operand 2					Data Processing / PSR Transfer					
Cond	0	0	0	0	0	0	Α	s	Г	Rd		Г	Rr	1	T	F	₹s		1	0	0	1	Rm	Multiply
Cond	0	0	0	0	1	U	Α	s		Rdh	fi	Г	Rdl	.0	T	F	Rη		1	0	0	1	Rm	Multiply Long
Cond	0	0	0	1	0	В	0	0	Г	Rn		Г	Ro	1	0	0	O	0	1	0	0	1	Rm	Single Data Swap
Cond	0	0	0	1	0	0	1	0	1	1 1	1	1	1	1 1	1	1	1	1	0	0	0	1	Rn	Branch and Exchang
Cond	0	0	0	Р	U	0	W	L	Г	Rn		Γ	Ro		0	0	C	0	1	S	Н	1	Rm	Halfword Data Trans register offset
Cond	0	0	0	Р	U	1	w	L		Rn			Ro	i		C	off:	set	1	s	Н	1	Offset	Halfword Data Trans immediate offset
Cond	0	1	-	Р	U	В	w	L	Г	Rn Rd Offset				Single Data Transfer										
Cond	0	1	1	Г	_		_	_		1					Undefined									
Cond	1	0	0	Р	U	S	W	L		Rn Register List					Block Data Transfer									
Cond	1	0	1	L	Г									0	fse	t								Branch
Cond	1	1	0	Р	U	N	w	L		Rn		Γ	CR	d	Γ	С	P#	ŧ	Γ			Off	set	Coprocessor Data Transfer
Cond	1	1	1	0	(P	Op	ю		CR	1		CR	d		С	P#	ŧ		CF)	0	CRm	Coprocessor Data Operation
Cond	1	1	1	0	CF	P (рс	L		CR	1		Ro	1		С	P#	¥		CF	•	1	CRm	Coprocessor Registe Transfer
Cond	1	1	1	1	Т			_	_			la	nore	d b	v pi	roc	es	sor	_			_		Software Interrupt

TDII - Microcontroladores - ARM

41

Repertorio de instrucciones

Todas las instrucciones son condicionales

Code	Suffix	Flags	Meaning
0000	EQ	Z set	equal
0001	NE	Z clear	not equal
0010	CS	C set	unsigned higher or same
0011	CC	C clear	unsigned lower
0100	MI	N set	negative
0101	PL	N clear	positive or zero
0110	VS	V set	overflow
0111	VC	V clear	no overflow
1000	HI	C set and Z clear	unsigned higher
1001	LS	C clear or Z set	unsigned lower or same
1010	GE	N equals V	greater or equal
1011	LT	N not equal to V	less than
1100	GT	Z clear AND (N equals V)	greater than
1101	LE	Z set OR (N not equal to V)	less than or equal
1110	AL	(ignored)	always

TDII - Microcontroladores - ARM

42

- Aritméticas
 - ADD r0,r1,r2
 - ADC r0,r1,r2
 - SUB r0,r1,r2
 - SBC r0,r1,r2
 - RSB r0,r1,r2 ;inversa
 - RSB r0, r1, r2 ; r0 := r2 r1 + c 1

TDII - Microcontroladores - ARM

43

Repertorio de instrucciones

- Aritméticas
 - ADD r3,r2,#1
 - ADD r3,r2,r1, Isl #3 (Isr, asl, asr, ror, rrx)
 - ADD r5,r5,r3, LSL r2
 - MUL r4,r3,r2
 - -MLA r4,r3,r2,r1 ;r4:=(r3 x r2 + r1)
 - RSB r0,r0,r0, LSL #3
 - »; Multiplicar por 7

TDII - Microcontroladores - ARM

- Lógicas
 - AND r0,r1,r2
 - ORR r0,r1,r2
 - EOR r0,r1,r2; r0:= r1 xor r2
 - -BIC r0,r1,r2 ; r0:= r1 and not r2
 - AND r8,r7,#&ff

TDII - Microcontroladores - ARM

45

Solo afectan los Flags

```
CMP r1, r2 ; cc por r1 - r2

CMN r1, r2 ; cc por r1 + r2

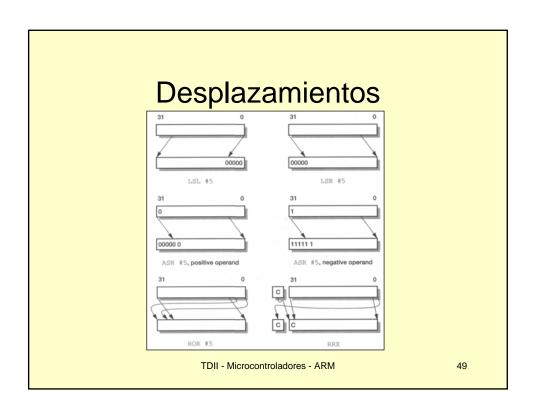
TST r1, r2 ; cc por r1 and r2

TEQ r1, r2 ; cc por r1 xor r2
```

TDII - Microcontroladores - ARM

Inmediatas

- ADD r3, r3,#1 ; r3 := r3 + 1
- AND r8, r7,#&ff ; r8 := r7[7:0]


TDII - Microcontroladores - ARM

47

Desplazamientos

- ADD r3, r2, r1, LSL #3; r3 := r2 + 8 x r1
- ADD r5, r5, r3, LSL r2; r5 : = r5 + r3 x 2^{r2}

TDII - Microcontroladores - ARM

Modificando el CCR

```
ADDS r2, r2, r0; 32-bit carry out -> C..
ADC r3, r3, r1; .. and added into high word
```

TDII - Microcontroladores - ARM

Movimiento de Datos

- Movimiento
 - MOV r0,r2
 - -MVN r0,r2; r0:=not r2
 - LDR r0,[r1]
 - STR r0,[r1]
 - LDR r0,[r1], #4
 - LDR r0,[r1,#4]!

TDII - Microcontroladores - ARM

51

Copia de tablas

TDII - Microcontroladores - ARM

Pre y post indexado

```
LDR r0,[r1,#4]; r0 := men32[r1+4]
```

```
LDR r0,[r1,#4]!; r0 := mem32[r1+4]; r1 := r1+4
```

TDII - Microcontroladores - ARM

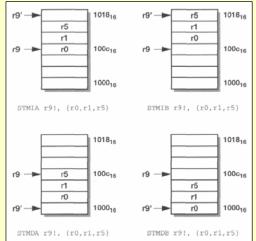
53

Tablas y registros

```
LDMIA r1, \{r0,r2,r5\} ; r0 := mem_{32}[r1] ; r2 := mem_{32}[r1 + 4] ; r5 := mem_{32}[r1 + 8]
```

TDII - Microcontroladores - ARM

Uso de la Pila


```
LDMIA r0!, {r2-r9}
STMIA r1, {r2-r9}
```

```
STMFD r13!, {r2-r9}
LDMIA r0!, {r2-r9}
STMIA r1, {r2-r9}
LDMFD r13!, {r2-r9}
```

TDII - Microcontroladores - ARM

55

Transferencia de Registros

TDII - Microcontroladores - ARM

Copia de bloques y stack

		Asce	nding	Descending		
		Full	Empty	Full	Empty	
Increment	Before	STMIB STMFA			LDMIB LDMED	
increment	After		STMIA STMEA	LDMIA LDMFD		
Decrement	Before	**************************************	LDMDB LDMEA	STMDB STMFD		
Decrement	After	LDMDA LDMFA			STMDA STMED	

TDII - Microcontroladores - ARM

57

Instrucciones ARM7

- Instrucciones de salto (Branching): BX, B, BL
- BX: Branch and eXchange, salto con cambio de conjunto de instrucciones ARM < -- > Thumb
- B: salto con desplazamiento de 24 bits con signo
- BL: enlace (link) PC -> R14
- Instrucciones de transferencia de datos: LDR, STR, LDRH, STRH, LDRSB, LDRSH, LDM, STM, SWP.

TDII - Microcontroladores - ARM

Control de flujo

		-
D		
Branch	Interpretation	Normal uses
B BAL	Unconditional	Always take this branch
	Always	Always take this branch
BEQ	Equal	Comparison equal or zero result
BNE	Not equal	Comparison not equal or non-zero result
BPL	Plus	Result positive or zero
BMI	Minus	Result minus or negative
BCC	Carry clear	Arithmetic operation did not give carry-out
BLO	Lower	Unsigned comparison gave lower
BCS	Carry set Higher	Arithmetic operation gave carry-out
BHS	or same	Unsigned comparison gave higher or same
BVC	Overflow clear	Signed integer operation; no overflow occurred
BVS	Overflow set	Signed integer operation; overflow occurred
BGT	Greater than	Signed integer comparison gave greater than
BGE	Greater or equal	Signed integer comparison gave greater or equal
BLT	Less than	Signed integer comparison gave less than
BLE	Less or equal	Signed integer comparison gave less than or equal
BHI	Higher	Unsigned comparison gave higher
BLS	Lower or same	Unsigned comparison gave lower or same

TDII - Microcontroladores - ARM

59

Ejemplo

```
CMP r0,#5
BEQ SALTO
ADD r1,r1,r0
```

SUB r1,r1,r2 ; r0:=r1 + r0 - r2

Salto:

CMP r0,#5 ADDNE r1,r1,r0

SUBNE r1,r1,r2 ;r0:=r1 + r0 - r2

TDII - Microcontroladores - ARM

Subrutinas

BL subru

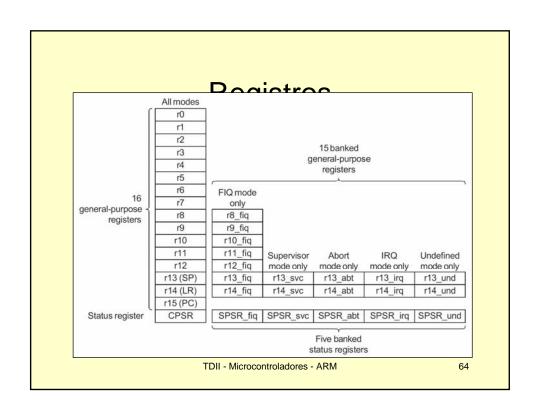
. . .

Subru:

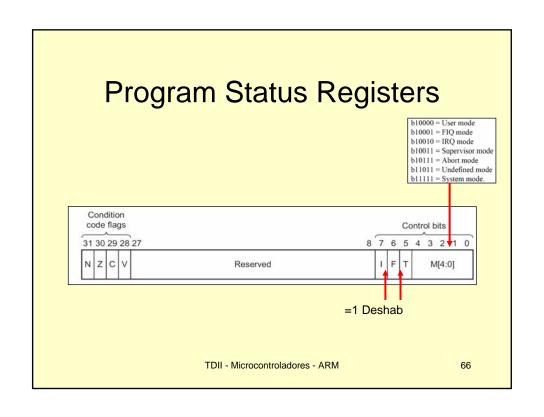
mov pc,r14

TDII - Microcontroladores - ARM

61


Instrucciones ARM7

- Instrucciones de excepciones: SWI, SoftWare Interrupt.
- Instrucciones del Coprocesador: CDP, LDC, STC, MRC, MCR.
- ARM no ejecuta estas instrucciones pero deja al coprocesador la manipulación de ellas.


TDII - Microcontroladores - ARM

Modos

Para ejecución normal de aplicación
Transferencia de datos de alta velocidad
Manejo general de Interrupciones
Modo protegido para el sistema operativo
Para implementar memoria virtual o protección de memoria
Emulación por software de coprocesadores
Para correr tareas privilegiadas del sistema operativo
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Registros						
Modo	Indentificador de modo de bancos de registros					
User	_usrb					
Fast interrupt	_fiq					
Interrupt	_irq					
Supervisor	_svc					
Abort	_abt					
System	_usr					
Undefined	_und					
TDII - Microco	ntroladores - ARM 65					

Little endian data format

31 24	23 16	15 8	7 0	-
Byte 3 at address F	Byte 2 at address E	Byte 1 at address D	Byte 0 at address C	Word at address C
Halfword 1	at address E	Halfword 0 a	at address C	
Byte 3 at address B	Byte 2 at address A	Byte 1 at address 9	Byte 0 at address 8	Word at address 8
Halfword 1	at address A	Halfword 0	at address 8	-
Byte 3 at address 7	Byte 2 at address 6	Byte 1 at address 5	Byte 0 at address 4	Word at address 4
Halfword 1	at address 6	Halfword 0	at address 4	-
Byte 3 at address 3	Byte 2 at address 2	Byte 1 at address 1	Byte 0 at address 0	Word at address 0
Halfword 1	at address 2	Halfword 0	at address 0	-

TDII - Microcontroladores - ARM

Big Endian data format

31 24	23 16	15 8	7 0	
Byte 0 at address F	Byte 1 at address E	Byte 2 at address D	Byte 3 at address C	Word at address C
Halfword 0	at address E	Halfword 1 a	at address C	
Byte 0 at address B	Byte 1 at address A	Byte 2 at address 9	Byte 3 at address 8	Word at address 8
Halfword 0	at address A	Halfword 1	at address 8	
Byte 0 at address 7	Byte 1 at address 6	Byte 2 at address 5	Byte 3 at address 4	Word at address 4
Halfword 0	at address 6	Halfword 1	at address 4	
Byte 0 at address 3	Byte 1 at address 2	Byte 2 at address 1	Byte 3 at address 0	Word at address 0
Halfword 0	at address 2	Halfword 1	at address 0	

TDII - Microcontroladores - ARM

Excepciones

- Dir Prox Instrucción → LR
 - Si la excepción ocurre en estado ARM, PC+4 ó PC+8
 - Si la excepción ocurre en Thumb PC+2 ó PC+4
- Copia CPSR al correspondiente SPSR
- Fuerza los bits de modo del CPSR (según la excepción
- Fuerza a buscar con el PC la instrucción según el vector

TDII - Microcontroladores - ARM

69

Retorno de excepciones

	Saved	LR value	B			
Exception	ARM	Thumb	Recommended return instruction	Return point		
Reset	-	-	-	After Reset, r14_svc value is Unpredictable.		
Data Abort	PC + 8	PC + 8	SUBS PC, R14_abt, #8	Returns to aborted instruction.		
FIQ	PC + 4	PC + 4	SUBS PC, R14_fiq, #4	Returns to interrupted instruction.		
IRQ	PC + 4	PC + 4	SUBS PC, R14_irq, #4	Returns to interrupted instruction.		
Prefetch Abort	PC + 4	PC + 4	SUBS PC, R14_abt, #4	Returns to aborted instruction.		
Undefined instruction	PC + 4	PC + 2	MOVS PC, R14_und	Returns to instruction after Undefined instruction.		
SWI instruction	PC + 4	PC + 2	MOVS PC, R14_svc	Returns to instruction after SWI instruction.		

- CPSR ← SPSR
- Limpia Interrupt Disable
 TDII Microcontroladores ARM

Vectores de excepción

Address	Exception	Mode on entry	I state on entry	F state on entry
0×00000000	Reset	Supervisor	Set	Set
0×00000004	Undefined Instruction	Undefined	Set	Unchanged
0×00000008	SWI	Supervisor	Set	Unchanged
0x0000000C	Prefetch Abort	Abort	Set	Unchanged
0×00000010	Data Abort	Abort	Set	Unchanged
0x00000014	Reserved	Reserved	-	-
0×00000018	IRQ	IRQ	Set	Unchanged
0x0000001C	FIQ	FIQ	Set	Set

TDII - Microcontroladores - ARM

71

Prioridades de las excepciones

Priority	Exception
Highest	Reset
	Data Abort
	FIQ
	IRQ
	Prefetch Abort
Lowest	Undefined Instruction and SWI

TDII - Microcontroladores - ARM

- Para sistemas que requieren manejo completo de memoria virtual y espacios de ejecución protegidos.
- Memoria caché de 8K
- MMU: unidad controladora de memoria.
- Para aplicaciones de plataforma abierta como Windows CE, Linux, Palm OS y Symbian OS.

TDII - Microcontroladores - ARM

73

Big Endian data format

	<u> </u>			
31 24	23 16	15 8	7 0	_
Byte 0 at address F	Byte 1 at address E	Byte 2 at address D	Byte 3 at address C	Word at address C
Halfword 0	at address E	Halfword 1 a	at address C	_
Byte 0 at address B	Byte 1 at address A	Byte 2 at address 9	Byte 3 at address 8	Word at address 8
Halfword 0 at address A Halfword 1 at address 8				
Byte 0 at address 7	Byte 1 at address 6	Byte 2 at address 5	Byte 3 at address 4	Word at address 4
Halfword 0				
Byte 0 at address 3	Byte 1 at address 2	Byte 2 at address 1	Byte 3 at address 0	Word at address 0
Halfword 0	at address 2	Halfword 1	at address 0	-

TDII - Microcontroladores - ARM

Excepciones

- Dir Prox Instrucción → LR
 - Si la excepción ocurre en estado ARM, PC+4 ó PC+8
 - Si la excepción ocurre en Thumb PC+2 ó PC+4
- Copia CPSR al correspondiente SPSR
- Fuerza los bits de modo del CPSR (según la excepción
- Fuerza a buscar con el PC la instrucción según el vector

TDII - Microcontroladores - ARM

75

Retorno de excepciones

	Saved LR value		Recommended		
Exception	ARM	Thumb	return instruction	Return point	
Reset	-	-	-	After Reset, r14_svc value is Unpredictable.	
Data Abort	PC + 8	PC + 8	SUBS PC, R14_abt, #8	Returns to aborted instruction.	
FIQ	PC + 4	PC + 4	SUBS PC, R14_fiq, #4	Returns to interrupted instruction.	
IRQ	PC + 4	PC + 4	SUBS PC, R14_irq, #4	Returns to interrupted instruction.	
Prefetch Abort	PC + 4	PC + 4	SUBS PC, R14_abt, #4	Returns to aborted instruction.	
Undefined instruction	PC + 4	PC + 2	MOVS PC, R14_und	Returns to instruction after Undefined instruction.	
SWI instruction	PC + 4	PC + 2	MOVS PC, R14_svc	Returns to instruction after SWI instruction.	

- CPSR ← SPSR
- Limpia Interrupt Disable
 TDII Microcontroladores ARM

Vectores de excepción

Address	Exception	Mode on entry	I state on entry	F state on entry
0×000000000	Reset	Supervisor	Set	Set
0x00000004	Undefined Instruction	Undefined	Set	Unchanged
0×00000008	SWI	Supervisor	Set	Unchanged
0x0000000C	Prefetch Abort	Abort	Set	Unchanged
0x00000010	Data Abort	Abort	Set	Unchanged
0x00000014	Reserved	Reserved	-	-
0x00000018	IRQ	IRQ	Set	Unchanged
0x0000001C	FIQ	FIQ	Set	Set

TDII - Microcontroladores - ARM

77

Prioridades de las excepciones

Priority	Exception	
Highest	Reset	
	Data Abort	
	FIQ	
	IRQ	
	Prefetch Abort	
Lowest	Undefined Instruction and SWI	

TDII - Microcontroladores - ARM

- Para sistemas que requieren manejo completo de memoria virtual y espacios de ejecución protegidos.
- Memoria caché de 8K
- MMU: unidad controladora de memoria.
- Para aplicaciones de plataforma abierta como Windows CE, Linux, Palm OS y Symbian OS.

TDII - Microcontroladores - ARM

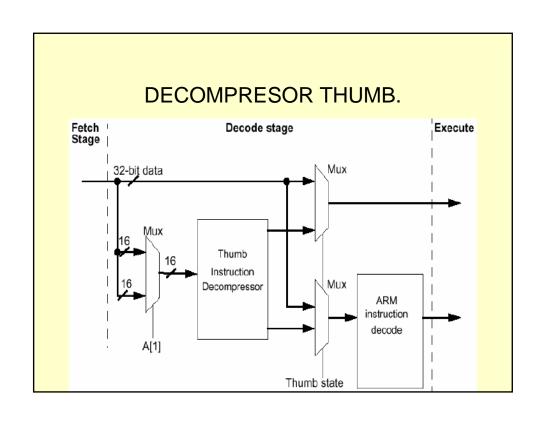
79

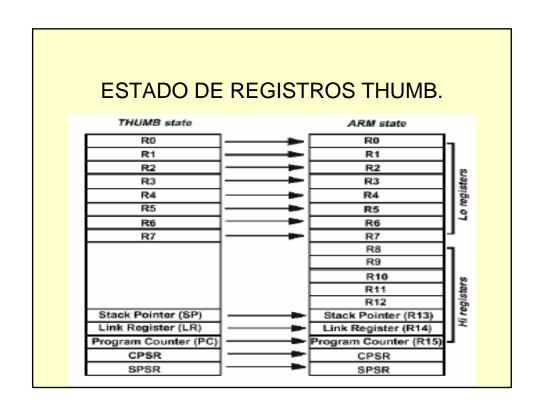
Repertorio de instrucciones

- Comparación
 - CMP r1,r2
 - CMN r1,r2
 - TST r1,r2
 - TEQ r1,r2

TDII - Microcontroladores - ARM

Instrucciones de Movimiento

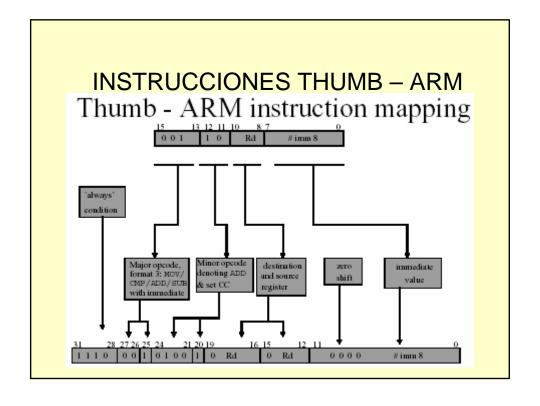

- MOV r0,r2
- -MVN r0,r2; r0:=not r2
- LDR r0,[r1]
- STR r0,[r1]
- LDR r0,[r1], #4
- LDR r0,[r1,#4]!


TDII - Microcontroladores - ARM

Aritméticas

- ADD r1, r2, r3 ; r1 = r2 + r3
- ADC r1, r2, r3 ; r1 = r2 + r3 + C
- SUB r1, r2, r3 ; r1 = r2 r3
- SUBC r1, r2, r3 ; r1 = r2 r3 + C 1
- RSB r1, r2, r3 ; r1 = r3 r2
- RSC r1, r2, r3 ; r1 = r3 r2 + C 1

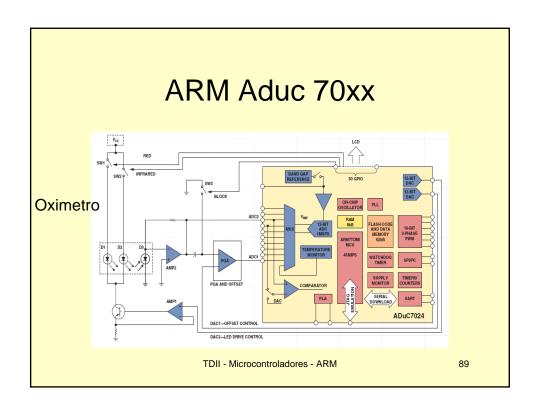
TDII - Microcontroladores - ARM

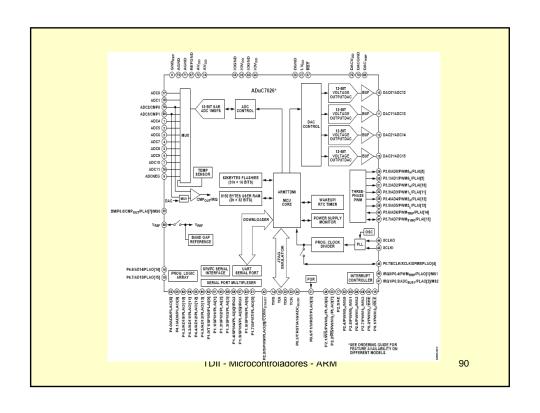


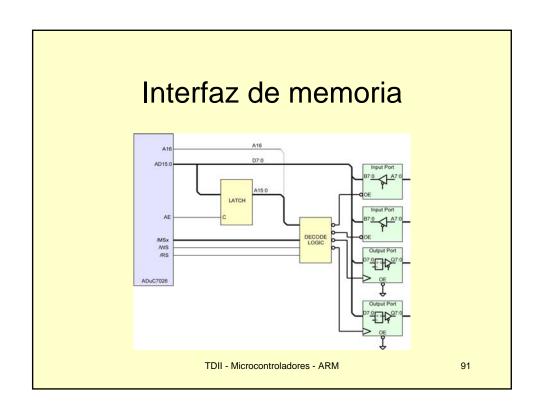
CONJUNTO DE INSTRUCCIONES THUMB.

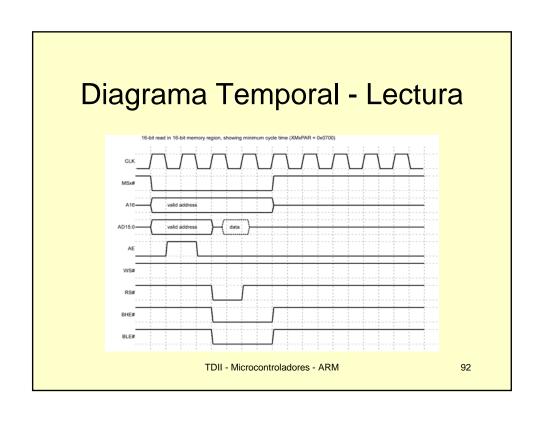
- La longitud de palabra se reduce a 16 bits.
- Las instrucciones siguen su propia sintaxis, pero cada instrucción tiene su contraparte en ARM nativo.
- Debido a la reducción de bits, se pierde cierta funcionalidad.
- Existen 19 formatos diferentes de instrucción Thumb.

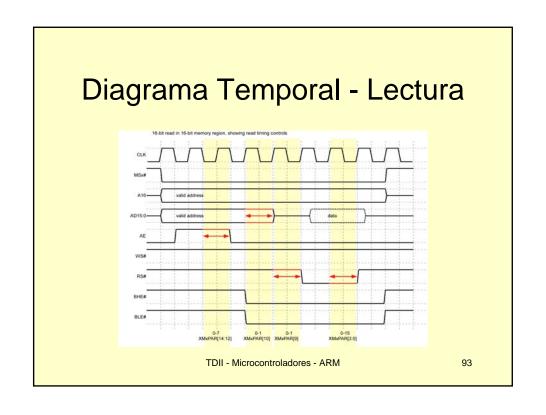
TDII - Microcontroladores - ARM

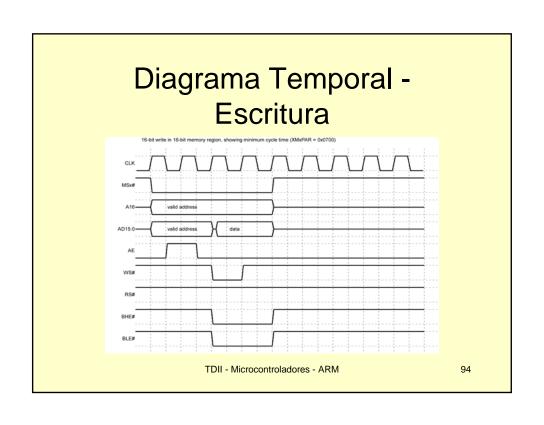

SUMARIO: CONJUNTO DE INSTRUCCIONES THUMB.

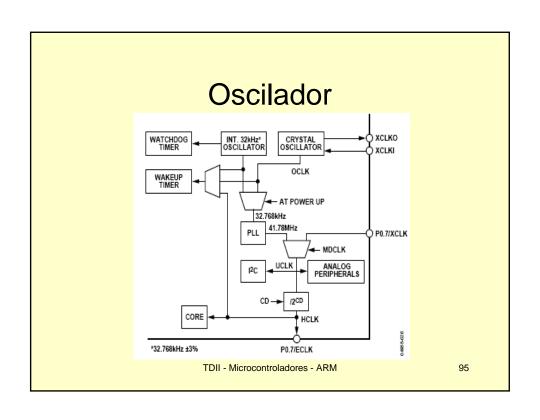

Mi	nemonic	Operation	Mnemonic	Operation
M	OV	Move	MVN	Move Not
A[DD D	Add	ADC	Add with Carry
SI	JB	Subtract	SBC	Subtract with Carry
R	SB	Reverse Subtract	RSC	Reverse Subtract with Carry
Cf	ИP	Compare	CMN	Compare Negated
TS	šΤ	Test	NEG	Negate
1A	ND	Logical AND	BIC	Bit Clear
EC	OR	Logical Exclusive OR	ORR	Logical (inclusive) OR
LS	SL .	Logical Shift Left	LSR	Logical Shift Right
AS	SR	Arithmetic Shift Right	ROR	Rotate Right
M	JL	Multiply	BKPT	Breakpoint
В		Unconditional Branch	Bcc	Conditional Branch
BL		Branch and Link	BLX	Branch and Link and Exchange
B)	(Branch and Exchange	SWI	Software Interrupt
LD	R .	Load Word	STR	Store Word
LD)RH	Load Halfword	STRH	Store Halfword
LD)RB	Load Byte	STRB	Store Byte
LD	RSH)	Load Signed Halfword	LDRSB	Load Signed Byte
LD	MIA	Load Multiple	STMIA	Store Multiple
Pl	JSH	Push Registers to stack	POP	Pop Registers from stack

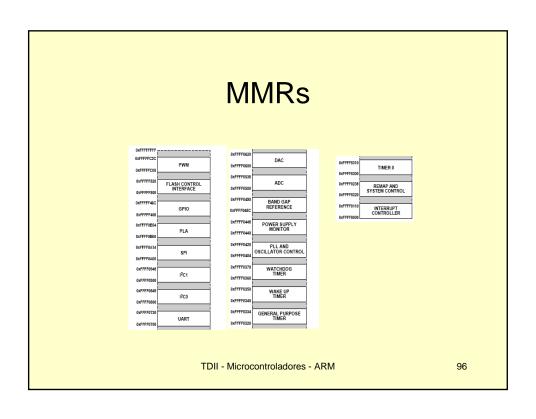

APLICACIONES DE THUMB.


- Para optimizar el costo y el consumo de potencia.
- Para rutinas de control largas y no críticas.


TDII - Microcontroladores - ARM





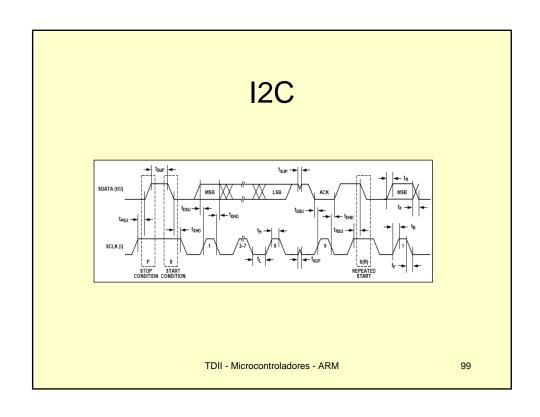


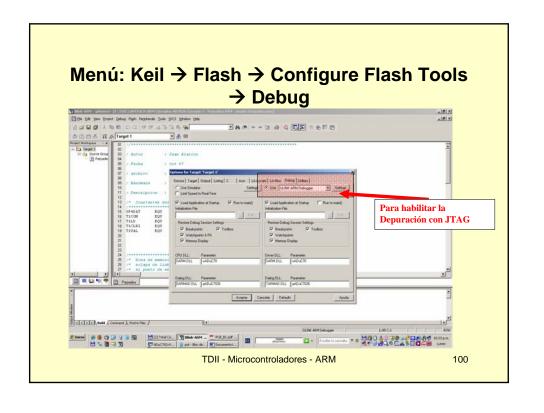
Autor Marcelo Romeo UTN-FRBA Archivo I2C_Master.c ADuC7026. Hardware Descripcion I2C master para conectarse con Dispositivo externo esclavo Opera en dos modos, lectura y escritura (recibe y transmite Al inicio de la transmisión I2C el Master envía la dirección. El LSB indica si el Master realizará lectura (1) o escritura (0). #include<ADuC7026.h> #define count 0x4: // Número de bytes a ser recibidos - 1 void delay(int); void IRQ_Handler() __irq; int i = 0, dat[5]; // El tamaño de dat deberá ser (count + 1) TDII - Microcontroladores - ARM

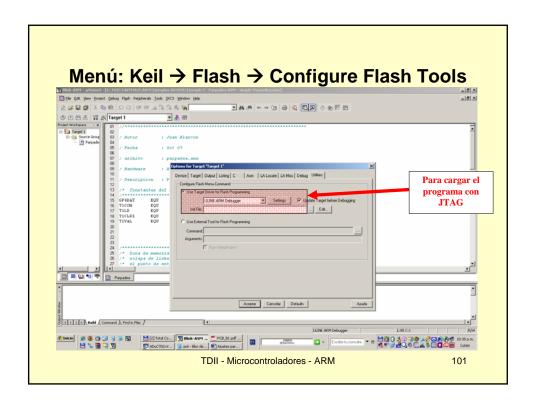
IRQEN

IRQEN Re	gister		
Name	Address	Default Value	Access
IRQEN	0xFFFF0008	0x00000000	R/W
			40

0 All interrupts OR'ed 1 SWI: not used in IRQEN/CLR and FIQEN/CLR 2 Timer 0 3 Timer 1


4 Wake Up timer – Timer 2 5 Watchdog timer – Timer 3 6 Flash control 7 ADC channel


8 PLL lock 9 I2C0 Slave 10 I2C0 Master 11 I2C1 Master 12 SPI Slave 13 SPI Master 14 UART


15 External IRQ0 16 Comparator 17 PSM

18 External IRQ1 19 PLA IRQ0 20 PLA IRQ1 21 External IRQ2 22 External IRQ3 23 PWM trip 24 PWM sync

TDII - Microcontroladores - ARM

- Es una familia constituida por los procesadores ARM920T, ARM922T Y ARM940T.
- Construida en base al procesador ARM9TDMI.
- Set de instrucciones de 16 Bits.
- El procesador es RISC de 32 Bits.
- Buffer de escritura de 8 entradas.

TDII - Microcontroladores - ARM

- Pipeline de 5 estados que alcanza 1.1 MIPS/MHz, expandible a 300 MIPS.
- Bus de interface AMBA de 32 Bits.
- MMU (Memory Management Unit) que soporta Windows CE, Symbian OS, Linux, Palm OS.
- MPU (Memory Protection Unit) soportando una amplia gama de sistemas operativos en tiempo real, incluyendo VxWORKS.

TDII - Microcontroladores - ARM

103

ARM920T Y ARM922T

- Macrocelulas basadas en el ARM9TDMI RISC de 32 Bits convenientes para una gama de aplicaciones basadas en plataforma OS, ofrecen caches para instrucciones y datos, son idénticos pero se diferencian en que uno es de 16k y el otro de 8k.
- MMU permitiendo soporte para otros sistemas operativos importantes.

TDII - Microcontroladores - ARM

APLICACIONES

- En las próximas generaciones de Teléfonos, comunicadores y PDA'S.
- En procesadores 3G.
- En dispositivos basados en Plataforma OS.
- Cámaras digitales.
- Decodificadores de Audio y video.
- En la industria automotiva.

TDII - Microcontroladores - ARM